27.09.2021 - Julius-Maximilians-Universität Würzburg

Wie Pockenviren sich vermehren

Erstmals die Polymerase von Vaccinia-Viren auf atomarer Ebene bei der Arbeit beobachtet

Pockenviren haben einen einzigartigen Weg gefunden, ihre Gene im infizierten Organismus in Proteine zu übersetzen. Wissenschaftlern vom Biozentrum der Universität Würzburg ist es jetzt erstmals gelungen, Einblicke in die atomare Arbeitsweise der daran beteiligten molekularen Maschine zu erhalten. Mit ihren Aufnahmen können sie die frühe Phase der Transkription wie in einem Film darstellen.

Der weltweit letzte Pockenfall trat im Oktober 1977 in Somalia auf. 1980 hat die Weltgesundheitsorganisation WHO die Pocken für ausgerottet erklärt. Offiziellen Angaben nach existiert das Virus heute nur noch in zwei Hochsicherheitslaboren in Russland und in den USA und dient dort Forschungszwecken.

Auch wenn es deshalb aktuell keine unmittelbare Bedrohung mehr für den Menschen durch Pockenviren gibt, ist diese Virusfamilie für Forscher nach wie vor von großem Interesse. Zum einen werden modifizierte Stämme erfolgreich bei der Behandlung von Krebserkrankungen eingesetzt, zum anderen faszinieren ihre ungewöhnlichen Vermehrungseigenschaften.

Pockenviren bauen ihre eigene Vermehrungsmaschine

Während sich viele Viren in großem Umfang der biochemischen Ausstattung der Wirtszelle bedienen, um sich zu vermehren, kodieren Pockenviren eine eigene molekulare Maschinerie dafür in ihrem Genom. Wichtige Bestandteile dieser Maschinerie sind zwei Enzyme, die DNA-Polymerase, die die viralen Gene vervielfältigt, und die RNA-Polymerase, die die viralen Gene in mRNA umschreibt. Die RNA-Polymerase des Pockenvirenstammes Vaccinia beispielsweise ist ein großer Komplex, der 15 verschiedene Proteinuntereinheiten mit unterschiedlichen biochemischen Funktionen zusammenfasst.

Einem Forschungsteam vom Biozentrum der Julius-Maximilians-Universität Würzburg (JMU) ist es jetzt erstmals gelungen, der Polymerase von Vaccinia-Viren auf atomarer Ebene bei der Arbeit zuzusehen. Zuvor hatte es bereits in seinen Experimenten die RNA-Polymerase in atomarer Auflösung dargestellt. Verantwortlich für die Arbeiten ist die Gruppe um Utz Fischer, dem Inhaber des Lehrstuhls für Biochemie I der JMU. In einer Veröffentlichung in der Fachzeitschrift Nature Structure and Molecular Biology stellt die Gruppe jetzt die Ergebnisse seiner Arbeit vor.

Dreidimensionale Strukturen in atomarer Größenordnung

„Wir haben isolierte RNA-Polymerase mit einem Stück DNA gemischt, das das Startsignal für die Transkription viraler Gene, den Promoter, enthält. Das Enzym erkannte präzise dieses DNA-Element, und fing an mRNA herzustellen“, erläutert Julia Bartuli, die für die biochemische Arbeit der Studie verantwortlich ist. Anschließend wurden die Proben in Zusammenarbeit mit Bettina Böttcher vom Lehrstuhl für Biochemie II im Kryo-Elektronenmikroskop untersucht. Auf Basis der dabei gesammelten Daten konnten die Wissenschaftler die dreidimensionale Struktur der Probe bis in die Größenordnung von Atomen unter Einsatz moderner Computerverfahren rekonstruieren.

Von dem Endergebnis dieses langwierigen Prozesses waren sie begeistert: „Wir haben zwar nur eine Probe im Mikroskop untersucht, aus dieser konnten wir aber insgesamt sechs unterschiedliche Polymerase-Komplexe rekonstruieren, die wir schließlich einzelnen Phasen des Transkriptionsprozesses zuordnen konnten“, erklärt Clemens Grimm, der an Fischers Lehrstuhl für die Strukturanalyse verantwortlich ist. „Diese Einzelaufnahmen erlauben uns, sie wie in einem Film aneinanderzureihen und so die frühe Phase der Transkription auch zeitaufgelöst darzustellen.“

Pocken sind weiterhin eine Bedrohung für den Menschen

Aber warum sollte man über Pockenviren forschen, wenn das für Menschen so gefährliche Virus doch bereits ausgerottet wurde? Hierfür gibt es gute Gründe, wie Fischer entgegnet: „Eine Pockeninfektion ist nach wie vor nicht zuverlässig heilbar, sondern nur durch eine Impfung zu verhindern. Sollten bislang noch vorhandene Virusproben, beispielsweise durch einen terroristischen Anschlag, wieder verbreitet werden, würden sie auf eine Bevölkerung treffen, die keinen Impfschutz hat.“

Eine weitere, möglicherweise realere Bedrohung sind Zoonosen, bei denen bislang tierspezifische Viren auf den Menschen überspringen, erklärt Fischer. So komme es sporadisch immer wieder zu Infektionen des Menschen durch Affen-Pockenviren, die bei den Betroffenen ein schweres Krankheitsbild hervorrufen können. „Sollte eine solche Zoonose durch weitere Anpassungen an den menschlichen Wirt und eine Mensch-zu-Mensch-Übertragung Fahrt aufnehmen, könnte eine gefährliche Epidemie entstehen“, so der Biochemiker.

Mit dem Computer zu neuen Medikamenten

Wirkstoffe, welche die Genexpression der Viren hemmen, wären als antivirale Medikamente daher von großer Relevanz. Das Wissen über die atomaren Strukturen der RNA-Polymerase in ihren verschiedenen Zuständen erlaubt es den Forschern nun, die Entwicklung solcher Hemmstoffe über einen rationalen, strukturbasierten Ansatz im Computer anzugehen. Derartige Studien, die sich in ihrer Herangehensweise grundlegend von der klassischen, versuchsbasierten Methode unterscheiden, sind bereits in vollem Gange.

Stichwort Pockenviren

Vor 1976 Geborene tragen – zumindest in Deutschland – auf ihrem Oberarm die deutlich sichtbare Narbe der Pockenschutzimpfung. Bis dahin galt in Deutschland eine Impfpflicht. Diese Impfung ist einer der größten Erfolge des modernen Infektionsschutzes: Sie führte zur Ausrottung des tödlichen Pockenerregers. Dieser, wissenschaftlich bekannt als Variolavirus, hatte bis weit ins 20. Jahrhundert hinein die Menschheit regelmäßig in Form von Pockenepidemien heimgesucht und viele Millionen Menschen das Leben gekostet

Frühe Formen einer Art „Impfung“ sind schon aus dem Altertum bekannt. Damals legten sich Menschen den Schorf abgeheilter Pocken in eine kleine Wunde und hofften, so einer ernsthaften Erkrankung vorbeugen zu können. In Europa wurden im 18. Jahrhundert derartige „Variolationen“ unter anderem auch am Würzburger Juliusspital durchgeführt. Der Durchbruch im Kampf gegen die Pocken gelang im Jahr 1796 dem Briten Edward Jenner, indem er das gefährliche Pockenvirus durch den für Menschen wesentlich harmloseren Erreger der Pferde- oder Kuhpocken ersetzte.

Der von Jenner verwendete Stamm ist unter dem Namen Vaccinia in die Medizingeschichte eingegangen. Er ist der Namensgeber für die heute gebräuchlichen Impfpraktiken, die medizinisch als Vakzinationen bekannt sind. Die weltweite Impfkampagne mit dem Vaccinia-Stamm führte schließlich dazu, dass die WHO 1980 zum ersten und bisher einzigen Mal in der Geschichte der Menschheit die globale Ausrottung einer Infektionskrankheit erklären konnte.

Fakten, Hintergründe, Dossiers

  • Pockenviren
  • Polymerasen
  • RNA-Polymerase
  • Transkription
  • Strukturanalysen

Mehr über Uni Würzburg

  • News

    Genaktivitäten eines Mundhöhlenkeims kartiert

    Der Mundhöhlenkeim Fusobacterium nucleatum ist dafür bekannt, das Wachstum menschlicher Karzinome, etwa im Darm oder in der Brust, zu beschleunigen. Das Helmholtz-Institut für RNA-basierte Infektionsforschung (HIRI), ein Standort des Helmholtz-Zentrums für Infektionsforschung (HZI), und die ... mehr

    Hindernisse auf der Rennstrecke des Lebens

    Bei der Übersetzung von Erbinformation in Proteine übernimmt mRNA eine wichtige Rolle. Ihre Produktion ist ein heikler Prozess. Ein Forschungsteam der Uni Würzburg hat jetzt einen einflussreichen Akteur identifiziert. Die Coronapandemie hat dafür gesorgt, dass der Begriff „mRNA“ inzwischen ... mehr

    Anti-Tumormittel aus dem Darm

    Es soll an der Entstehung chronisch-entzündlicher Darmerkrankungen beteiligt sein, Diabetes auslösen, für Übergewicht sorgen, sogar neurologische Erkrankungen wie Multiple Sklerose und Parkinson könnten hier ihre Ursachen haben – ganz zu schweigen von Depressionen und autistischen Störungen ... mehr

  • q&more Artikel

    Multinationale Medikamente

    Während in den 90er-Jahren des letzten Jahrhunderts 80 % aller Wirkstoffe und Hilfsstoffe in Europa bzw. in den USA produziert wurden, werden heute nahezu alle Ausgangsstoffe zur Herstellung von Arzneimittel in China und Indien hergestellt. Dies gilt nicht nur für die einzelnen Stoffe, sond ... mehr

    Hightech im Bienenvolk

    Vitale Bienenvölker sind von höchster Relevanz für die Aufrechterhaltung der natürlichen Diversität von Blütenpflanzen und die globale pflanzliche Nahrungsmittelproduktion, die zu 35 % von Insektenbestäubern abhängt, unter denen die Honigbiene (Apis mellifera) die überragende Rolle spielt. ... mehr

  • Autoren

    Prof. Dr. Jürgen Tautz

    Jg. 1949, studierte Biologie, Geographie und Physik an der Universität Konstanz und promovierte dort über ein sinnesökologisches Thema. Nach Arbeiten zur Bioakustik von Insekten, Fischen und Fröschen gründete er 1994 die BEEgroup an der Universität Würzburg, die sich mit Grundlagenforschung ... mehr

    Prof. Dr. Ulrike Holzgrabe

    Ulrike Holzgrabe (Jg. 1956) studierte Chemie und Pharmazie in Marburg und Kiel. Nach Approbation und Promotion folgte die Habilitation für Pharmazeutische Chemie 1989 ­in Kiel. Sie hatte eine Professur in Bonn (1990-1999), lehnte C4-Rufe nach Tübingen und Münster ab und folgte dem Ruf nach ... mehr

  • Videos

    Hightech im Bienenvolk

    mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: