21.09.2021 - Johann Wolfgang Goethe-Universität Frankfurt (Main)

Katalin Karikó, Özlem Türeci und Uğur Şahin erhalten Paul Ehrlich- und Ludwig Darmstaedter-Preis 2022

Die drei Preisträger werden für ihre Erforschung und Entwicklung von mRNA zu präventiven und therapeutischen Zwecken ausgezeichnet

Katalin Karikó, die Özlem Türeci und Uğur Şahin haben eine Technologieplattform etabliert, die in Teilbereichen der Medizin einen Paradigmenwechsel einleiten dürfte – von einer externen Applikation von Impfantigenen oder therapeutisch wirksamen Proteinen hin zu deren interner Produktion in den Körperzellen der Patienten. Als herausragender Erfolg hat sich dabei die spektakulär schnelle Entwicklung eines hochwirksamen Impfstoffes gegen die Coronavirus-Krankheit COVID-19 erwiesen, der bei der weltweiten Eindämmung der SARS-CoV2-Pandemie eine entscheidende Rolle spielt.

mRNAs sind Botenmoleküle, die genetische Informationen aus der DNA im Zellkern zu den Ribosomen im Cytoplasma bringen. Der Bauplan, den sie übertragen, leitet dort die Proteinsynthese an. In diesem Prozess der Translation wird genetische Information in biologische Funktion übersetzt. Im Gegensatz zur DNA sind mRNAs sehr instabile Moleküle. Die niedrige Proteinproduktion galt als ihre Hauptschwäche für eine pharmazeutische Nutzung. Zudem bewertet unser Immunsystem von außen applizierte mRNA normalerweise als Eindringling. Es schüttet Entzündungsbotenstoffe aus und drosselt die Translation der betreffenden mRNA. Während in Gentherapien mit DNA große (und bis heute weitgehend unerfüllte) Hoffnungen gesetzt wurden, schien die mRNA für einen medizinischen Einsatz nicht in Frage zu kommen.

Katalin Karikó blieb jedoch unbeirrt von der Dominanz der DNA-Forschung in den 1990er-Jahren ihrem Ziel treu, durch Einbringung von mRNA in lebenden Zellen die Produktion von Proteinen anzuregen, an denen es Patienten ganz oder teilweise mangelte, zum Beispiel bei einer Erbkrankheit wie der Mukoviszidose. Sie war vom prinzipiellen Vorteil solcher Proteinersatztherapien überzeugt. Denn anders als DNA-Therapeutika muss die mRNA nicht in den Zellkern gelangen, um ihre Wirkung zu entfalten. Anders als die mit Mutagenitätsrisiko behafteten DNA-Therapeutika integriert sich RNA nicht in das Genom ihrer Zielzelle und ist nur vorübergehend aktiv, weil sie sehr schnell abgebaut wird. Vielen Widrigkeiten zum Trotz gelang Karikó, die an der University of Pennsylvania forscht, schließlich ein entscheidender Durchbruch: Sie entdeckte, wie sich die körpereigene Abwehrreaktion gegen synthetische mRNA ausschalten und damit die intrazelluläre Proteinproduktion deutlich erhöhen ließ.

Uğur Şahin und Özlem Türeci kommen aus der Krebsforschung. Sie fokussierten sich an der Universität des Saarlandes und der Universität Mainz seit Mitte der 1990er-Jahre darauf, Krebsimpfstoffe zu entwickeln, die dem Immunsystem eines Patienten die Antigene seines eigenen Tumors präsentieren, damit es diesen zerstöre. Sie entschieden, dass die Gabe von mRNA, die die Baupläne von Tumorantigenen trug, dafür am besten geeignet sein würde. Ende der 1990er-Jahre begannen sie, mRNA so zu optimieren, dass sie als Krebsvakzin verimpft werden konnte. In jahrelanger Forschungsarbeit veränderten sie eine Vielzahl struktureller Komponenten der mRNA mit äußerster Präzision, wodurch sie sowohl deren intrazelluläre Stabilität als auch deren Translationseffizienz signifikant steigerten und damit einen alternativen Lösungsansatz entwickelten, der niedrigen Proteinproduktion entgegenzuwirken. Mit den 2006 publizierten Ergebnissen dieser Arbeit gingen sie im selben Jahr als Sieger aus dem ersten Go.Bio-Wettbewerb des Bundesministeriums für Bildung und Forschung hervor, was sie zur 2008 erfolgten Gründung von BioNTech motivierte.

In den Folgejahren gelang es dem Forscherpaar, die Impfstoffwirkung dadurch zu verbessern, dass sie mRNA gezielt in dendritische Zellen (DC) im lymphatischen Gewebe einbrachten. Diese besondere Sorte von DCs sind die „Hochleistungstrainer“ des Immunsystems und ermöglichen es, besonders starke Immunantworten zu induzieren. Dank der Entwicklung geeigneter Lipidnanopartikel als Transportmittel erreichten die beiden Ärzte und ihr Team eine körperweite Verbreitung von mRNA in dendritischen Zellen, wodurch sie eine große Zahl von Immunzellen rekrutieren konnten, die mit Präzision nur Krebszellen angriffen. Diese bahnbrechenden Fortschritte bildeten die Grundlage für den erfolgreichen Einsatz von mRNA in verschiedenen Indikationen beim Menschen. Um ihre Vision individualisierter Impfstoffe zu verwirklichen, entwickelten Şahin und Türeci ein wegweisendes Verfahren, um jeden mRNA-Impfstoff maßgenau an das genetische Profil des Tumors eines Patienten anzupassen. Es lässt sich auf alle Krebsarten anwenden.

In den vergangenen Jahren ist BioNTech dementsprechend in der klinischen Anwendung von Krebsimpfstoffen weit vorangekommen. Mehrere therapeutische Krebsimpfstoffe haben die erste Phase der klinischen Prüfung erfolgreich bestanden. Auf das von ihnen erfolgreich erprobte Prinzip, mRNA gezielt in DCs des lymphatischen Gewebes einzubringen, und auf ihre Erfahrung mit Krebsimpfstoffen konnten Şahin und Türeci später bei der Entwicklung des COVID-19-Impfstoffes zurückgreifen. Darüber hinaus kam dem COVID-19-Impfstoff der Einbau der verschiedenen optimierten Strukturkomponenten der mRNA zugute, die Sahin und Türeci ursprünglich für ihre Krebsimpfstoffe entwickelt hatten.

Katalin Karikó schloss sich dem Unternehmen 2013 an. Für die Entwicklung von Proteinersatztherapien sind die von ihr entdeckten nicht-immunogenen mRNA-Moleküle unerlässlich. Für die Entwicklung von Krebs-Vakzinen, die vor allem zelluläre Immunität hervorrufen sollen, sind sie es nicht. Eine gewisse Immunstimulation ist bei jeder Impfung zwingend erforderlich. Für die Entwicklung von Impfstoffen gegen Infektionskrankheiten, die vor allem eine humorale Immunität durch die Anregung der Produktion von Antikörpern hervorrufen sollen, ist nicht-immunogene mRNA jedoch von Vorteil. Mit unmodifizierter mRNA wäre die so schnelle Entwicklung eines hochwirksamen COVID-19-Impfstoffes deutlich schwieriger erreichbar gewesen. Beide bis heute im Kampf gegen die Corona-Pandemie erfolgreichen mRNA-Impfstoffe basieren folglich ebenso auf optimierten Strukturkomponenten der mRNA wie auf Katalin Karikós Entdeckung nicht-immunogener mRNA. Die notwendige Immunstimulation besorgen bei beiden die Lipidformulierungen.

Die Preise werden – zusammen mit den Preisen des Jahres 2021 – am 14. März 2022 vom Vorsitzenden des Stiftungsrates der Paul Ehrlich-Stiftung in der Frankfurter Paulskirche verliehen.

Fakten, Hintergründe, Dossiers

  • Coronavirus
  • SARS-CoV-2
  • mRNAs
  • mRNA-Impfstoffe
  • Proteinsynthese
  • dendritische Zellen
  • Krebsimpfstoffe
  • Proteinersatztherapie

Mehr über Uni Frankfurt am Main

  • News

    Woher wissen T-Killerzellen, von wo Gefahr droht?

    Wie erkennen T-Killerzellen von Viren befallene Körperzellen? Körperfremde Bestandteile werden als Antigene auf der Zelloberfläche wie eine Art Hinweisschild präsentiert. Die Langzeitstabilität dieses in der Zelle gebildeten Schildes stellt ein Netzwerk von Begleitproteinen sicher. Dies hab ... mehr

    Laborstudie: Wirkung von Antikörpern gegen Omikron-Varianten BA.1 und BA.2 lässt schnell nach

    Die von etwa Dezember bis April dominanten Omikron-Varianten BA.1 und BA.2 des SARS-CoV-2-Virus können bereits nach drei Monaten den Schutz vor einer Infektion unterlaufen, den Impfungen oder überstandene Infektionen bieten. Dies zeigt eine Studie aus Frankfurt unter Federführung des Univer ... mehr

    Wie Bakterien an Zellen andocken: Basis für die Entwicklung einer neuen Klasse von Antibiotika

    Die „Anheftung“ (Adhäsion) von Bakterien an Zellen ist immer der erste und einer der wichtigsten Schritte bei der Entstehung von Infektionserkrankungen. Diese Adhäsion der Infektionserreger dient dazu, den Wirtsorganismus, beispielsweise den Menschen, erst zu besiedeln und anschließend eine ... mehr

  • q&more Artikel

    Feiern und Hungern – für Bakterien kein Problem

    Bakterien sind wahre Überlebenskünstler. Im Laufe der Evolution haben sie zahlreiche Strategien entwickelt, sich an schnell veränderliche, unsichere Umweltbedingungen anzupassen. So ist ihr Stoffwechsel wesentlich ausgeklügelter als derjenige des Menschen. Sie können innerhalb von Minuten i ... mehr

    Warum Biosimilars und nicht Biogenerika?

    Bereits seit 2006 gibt es eine Gruppe gentechnisch hergestellter Medikamente, die unter der Bezeichnung „Biosimilars“ firmieren. Bis vor einem Jahr blieb diese Gruppe selbst in Fachkreisen eher unauffällig. Das ändert sich jedoch derzeit, da kürzlich ein erster Biosimilar-Antikörper zugelas ... mehr

    Paradigmen­wechsel

    Was wäre die Medizin ohne Arzneimittel? Aber werden Arzneimittel heute optimal ­eingesetzt? einesfalls, wie wir heute dank der Erkenntnisse aus der molekularen ­Medizin wissen. Denn beim Einsatz von Arzneimittel gilt es, zwei Aspekte zu beachten: ­die Krankheit und den Patienten. Erst langs ... mehr

  • Autoren

    Prof. Dr. Claudia Büchel

    Claudia Büchel, Jahrgang 1962, studierte Biologie an der Universität Mainz, wo sie auch promovierte und 2001 die Venia Legendi für Pflanzenphysiologie erhielt. Nach einem Postdoc-Aufenthalt am Biological Research Centre, Szeged, Ungarn war sie vier Jahre als Research Associate am Imperial C ... mehr

    Prof. Dr. Jörg Soppa

    Jörg Soppa, Jahrgang 1958, studierte Biochemie in Tübingen und promovierte anschließend am Max-Planck-Institut für Biochemie in Martinsried. Dort baute er ab 1990 eine eigene Forschungsgruppe auf und hielt Lehrveranstaltungen am Institut für Genetik und Mikrobiologie der Universität München ... mehr

    Prof. Dr. Heinfried H. Radeke

    Heinfried H. Radeke, Jg. 1955, studierte Medizin an der Medizinischen Hochschule Hannover (MHH; Approbation 1985) und promovierte mit der wissenschaftlich besten Dissertation des Jahres 1986. Nach zwei Jahren als Assistenzarzt in der Universitätskinder­klinik Göttingen begann er 1987 an der ... mehr

Mehr über BioNTech

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: