01.09.2021 - Technische Universität Wien

Einzelne Atome verankern

Wie lassen sich Einzelatome für die Katalyse verwenden? Forscher entwickeln eine neue Methode, um Einzelatome auf Trägermaterialien zu verankern

Oft heißt es „never change a running system“. Dabei können neue Methoden den alten weit überlegen sein. Während chemische Reaktionen bislang vor allem mit größeren Materialmengen, bestehend aus mehreren hundert Atomen, beschleunigt werden, liefern Einzelatome einen neuen Ansatz für die Katalyse.

Ein internationales Forschungsteam fand nun unter Führung der TU Wien eine Möglichkeit, einzelne Atome kontrolliert und stabil auf einer Oberfläche zu verankern. Dies ist ein wichtiger Schritt zur Katalyse mit Einzelatomen. Die neue Methode präsentierten die Forschenden um Bernhard C. Bayer in der Fachzeitschrift ACS Nano.

Einzelatome lösen Nanopartikel ab

Moderne Katalysatoren bestehen bereits aus Nanopartikeln und sind somit sehr klein. Betrachtete man ihre Größe jedoch auf atomarer Skala, sind sie mit mehreren hundert Atomen weit größer als Katalysatoren, die aus nur einem Einzelatom bestehen. Gelingt es, chemische Reaktionen mit weit kleineren als den bislang eingesetzten Materialmengen zu beschleunigen, eröffnet dies gänzlich neue Möglichkeiten. Denn die Katalyse mit Einzelatomen ist nicht nur nachhaltiger und energieeffizienter, sie ist auch selektiver und erzielt eine bessere Ausbeute.

Bei der neu entwickelten Methode dienen Siliziumatome als „Anker“ für metallische Einzelatome. Siliziumatome selbst kommen oft als Verunreinigung im Trägermaterial aus Kohlenstoff vor. An das Silizium werden Indiumatome gebunden, die als Katalysator fungieren können. „Die Indiumatome binden gezielt an die Silizium-Anker im Kohlenstoff-Kristallgitter“, sagt Bernhard C. Bayer vom Institut für Materialchemie an der TU Wien. „Damit verbleiben die Indium-Einzelatome stabil an ihren Plätzen und verklumpen nicht“, fährt der Leiter der Forschungsarbeiten fort. „Was die neue Technologie besonders spannend macht, ist, dass die Verankerung der Indiumatome durch die Siliziumatomen im Kohlenstoff selbstständig passiert, wenn die Reaktionsbedingungen stimmen. Dies macht den Prozess potenziell skalierbar“, ergänzt Kenan Elibol von der Universität Wien und dem Trinity College Dublin sowie Erstautor der Studie.

Das Verfahren bringt aber auch Herausforderforderungen mit sich, denen das Forschungsteam erfolgreich begegnete. Besonders das Aufbringen von Einzelatomen auf festen Trägeroberflächen gestaltet sich schwierig. Der Grund: Einzelne Atome entfernen sich schnell von ihren Plätzen und fügen sich zu größeren Partikeln zusammen. Atomar feines Indium zum Beispiel verklumpt sich normalerweise auf Kohlenstoffoberflächen schnell zu großen Nanopartikeln – die Vorteile der Einzelatom-Katalyse werden folglich aufgehoben.

Weitere Testungen folgen

Mit einem hochauflösenden Elektronenmikroskop an der Universität Wien konnte das Forschungsteam die Herstellungsmechanismen der Silizium-verankerten Indium-Einzelatome schließlich beobachten. „Wir konnten damit nachweisen, wie die Verankerung der Indiumatome davon abhängt, wie die Silizium-Anker im Kohlenstoff-Kristallgitter eingebaut sind“, sagt Toma Susi von der Universität Wien, der die Anker-Strukturen mittels modernster Computermethoden weiter entschlüsseln konnte. „Solch kontrollierte und bei Raumtemperatur stabile Verankerung von Einzelatomen auf festen Oberflächen wurde noch nicht in diesem Detail berichtet und eröffnet spannende Perspektiven für katalytische Anwendungen im Bereich Energie und Umwelt“, ergänzt Dominik Eder von der TU Wien und Experte für Katalyse.

Damit die Methode der Wiener Forschenden auch industriell eingesetzt werden kann, folgen weitere Experimente: „Die mit der neuen Methode platzierten Einzelatome sollen nun ausführlich als Katalysatoren für verschiedene chemische Reaktionen getestet werden“, so Bernhard C. Bayer.

Fakten, Hintergründe, Dossiers

Mehr über TU Wien

  • News

    Neue Biochip-Technologie für bessere Medikamententests

    Miniorgane in Form kleiner Gewebekügelchen verwendet man für Tests in der Pharmaindustrie. Dank einer Methode der TU Wien entsteht nun ein einheitlicher Standard dafür. Bevor man Medikamente in klinischen Studien testet, muss man sie an künstlich hergestellten Gewebeproben ausprobieren. Daf ... mehr

    Nanoteilchen: Chemie mit komplexem Rhythmus

    Die meisten Chemikalien, die industriell hergestellt werden, entstehen mit Hilfe von Katalysatoren. Meist bestehen diese Katalysatoren aus winzigen Metall-Nanoteilchen, die auf Trägeroberflächen festgehalten werden. Ähnlich wie ein geschliffener Diamant, dessen Oberfläche aus verschiedenen ... mehr

    Winzigsten Kräften auf der Spur: wie T-Zellen Eindringlinge erkennen

    T-Zellen spielen in unserem Immunsystem eine zentrale Rolle: Mit Hilfe sogenannter T-Zell-Rezeptoren (englisch: T-cell receptor, TCR) können sie gefährliche Eindringlinge oder Krebszellen im Körper erkennen, woraufhin sie eine Immunreaktion auslösen. Noch immer sind die molekularen Abläufe ... mehr

  • q&more Artikel

    Organs-on-a-Chip

    Ziel der personalisierten Medizin oder Präzisionsmedizin ist es, den Patienten über die funktionale Krankheitsdiagnose hinaus unter bestmöglicher Einbeziehung individueller Gegebenheiten zu behandeln. Organ-on-a-Chip-Technologien gewinnen für die personalisierte Medizin sowie die pharmazeut ... mehr

    Das Herz in der Petrischale

    Regenerative Medizin stellt eine der großen Zukunftshoffnungen und Entwicklungsperspektiven in der medizinischen Forschung des 21. Jahrhunderts dar. Revolu­tionäre Resultate konnten bereits durch gentechnische Eingriffe erzielt werden, ­wobei allerdings ethische und regulatorische Aspekte e ... mehr

  • Autoren

    Sarah Spitz

    Sarah Spitz, Jahrgang 1993, studierte Biotechnologie an der Universität für Bodenkultur in Wien (BOKU) mit Abschluss Diplomingenieur. Während ihres Studiums war sie für zwei Jahre als wissenschaftliche Mitarbeiterin am Department für Biotechnologie (DBT) der BOKU angestellt. Nach einer inte ... mehr

    Prof. Dr. Peter Ertl

    Peter Ertl, Jahrgang 1970, studierte Lebensmittel- und Biotechnologie an der Universität für Bodenkultur, Wien. Im Anschluss promovierte er in Chemie an der University of Waterloo, Ontario, Kanada und verbrachte mehrere Jahre als Postdoc an der University of California, Berkeley, USA. 2003 ... mehr

    Dr. Kurt Brunner

    Kurt Brunner, geb. 1973, studierte Technische Chemie an der TU Wien, wo er 2003 am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften promovierte. Während seiner Dissertation arbeitete er im Bereich der Molekularbiologie der Pilze mit Forschungsaufenthalten an de ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: