01.09.2021 - Technische Universität Wien

Einzelne Atome verankern

Wie lassen sich Einzelatome für die Katalyse verwenden? Forscher entwickeln eine neue Methode, um Einzelatome auf Trägermaterialien zu verankern

Oft heißt es „never change a running system“. Dabei können neue Methoden den alten weit überlegen sein. Während chemische Reaktionen bislang vor allem mit größeren Materialmengen, bestehend aus mehreren hundert Atomen, beschleunigt werden, liefern Einzelatome einen neuen Ansatz für die Katalyse.

Ein internationales Forschungsteam fand nun unter Führung der TU Wien eine Möglichkeit, einzelne Atome kontrolliert und stabil auf einer Oberfläche zu verankern. Dies ist ein wichtiger Schritt zur Katalyse mit Einzelatomen. Die neue Methode präsentierten die Forschenden um Bernhard C. Bayer in der Fachzeitschrift ACS Nano.

Einzelatome lösen Nanopartikel ab

Moderne Katalysatoren bestehen bereits aus Nanopartikeln und sind somit sehr klein. Betrachtete man ihre Größe jedoch auf atomarer Skala, sind sie mit mehreren hundert Atomen weit größer als Katalysatoren, die aus nur einem Einzelatom bestehen. Gelingt es, chemische Reaktionen mit weit kleineren als den bislang eingesetzten Materialmengen zu beschleunigen, eröffnet dies gänzlich neue Möglichkeiten. Denn die Katalyse mit Einzelatomen ist nicht nur nachhaltiger und energieeffizienter, sie ist auch selektiver und erzielt eine bessere Ausbeute.

Bei der neu entwickelten Methode dienen Siliziumatome als „Anker“ für metallische Einzelatome. Siliziumatome selbst kommen oft als Verunreinigung im Trägermaterial aus Kohlenstoff vor. An das Silizium werden Indiumatome gebunden, die als Katalysator fungieren können. „Die Indiumatome binden gezielt an die Silizium-Anker im Kohlenstoff-Kristallgitter“, sagt Bernhard C. Bayer vom Institut für Materialchemie an der TU Wien. „Damit verbleiben die Indium-Einzelatome stabil an ihren Plätzen und verklumpen nicht“, fährt der Leiter der Forschungsarbeiten fort. „Was die neue Technologie besonders spannend macht, ist, dass die Verankerung der Indiumatome durch die Siliziumatomen im Kohlenstoff selbstständig passiert, wenn die Reaktionsbedingungen stimmen. Dies macht den Prozess potenziell skalierbar“, ergänzt Kenan Elibol von der Universität Wien und dem Trinity College Dublin sowie Erstautor der Studie.

Das Verfahren bringt aber auch Herausforderforderungen mit sich, denen das Forschungsteam erfolgreich begegnete. Besonders das Aufbringen von Einzelatomen auf festen Trägeroberflächen gestaltet sich schwierig. Der Grund: Einzelne Atome entfernen sich schnell von ihren Plätzen und fügen sich zu größeren Partikeln zusammen. Atomar feines Indium zum Beispiel verklumpt sich normalerweise auf Kohlenstoffoberflächen schnell zu großen Nanopartikeln – die Vorteile der Einzelatom-Katalyse werden folglich aufgehoben.

Weitere Testungen folgen

Mit einem hochauflösenden Elektronenmikroskop an der Universität Wien konnte das Forschungsteam die Herstellungsmechanismen der Silizium-verankerten Indium-Einzelatome schließlich beobachten. „Wir konnten damit nachweisen, wie die Verankerung der Indiumatome davon abhängt, wie die Silizium-Anker im Kohlenstoff-Kristallgitter eingebaut sind“, sagt Toma Susi von der Universität Wien, der die Anker-Strukturen mittels modernster Computermethoden weiter entschlüsseln konnte. „Solch kontrollierte und bei Raumtemperatur stabile Verankerung von Einzelatomen auf festen Oberflächen wurde noch nicht in diesem Detail berichtet und eröffnet spannende Perspektiven für katalytische Anwendungen im Bereich Energie und Umwelt“, ergänzt Dominik Eder von der TU Wien und Experte für Katalyse.

Damit die Methode der Wiener Forschenden auch industriell eingesetzt werden kann, folgen weitere Experimente: „Die mit der neuen Methode platzierten Einzelatome sollen nun ausführlich als Katalysatoren für verschiedene chemische Reaktionen getestet werden“, so Bernhard C. Bayer.

Fakten, Hintergründe, Dossiers

Mehr über TU Wien

  • News

    Photokatalysatoren: Die besten Löcher der Welt

    Katalysatoren sind oft feste Materialien, deren Oberfläche in Kontakt mit Gasen oder Flüssigkeiten kommt und dadurch bestimmte chemische Reaktionen ermöglicht. Das bedeutet allerdings: Alle Atome des Katalysators, die sich nicht an der Oberfläche befinden, erfüllen keinen echten Zweck. Dahe ... mehr

    Bakterien als Klima-Helden

    Um in Zukunft eine kohlenstoffneutrale Kreislaufwirtschaft zu etablieren, werden Technologien benötigt, die als Rohstoff CO2 verwenden. In Form von Formiat kann CO2 von bestimmten Bakterien verstoffwechselt werden. Acetogene sind eine Gruppe von Bakterien, die Formiat verstoffwechseln könne ... mehr

    Steuerbare Katalyse: Die Lösung des Teilchengrößen-Problems

    Chemische Reaktionen kann man auf unterschiedlichen Ebenen betrachten: Auf der Ebene einzelner Atome und Moleküle zeigt sich, welche neuen Verbindungen möglich sind. Auf der Ebene von winzigen Teilchen auf Nano- und Mikrometer-Skala kann man verstehen, wie Katalysator-Materialien in die che ... mehr

  • q&more Artikel

    Wirkstoffsuche im Genom von Pilzen

    In Pilzen schlummert ein riesiges Potenzial für neue Wirkstoffe und wertvolle Substanzen, wie etwa Antibiotika, Pigmente und Rohstoffe für biologische Kunststoffe. Herkömmliche Methoden zur Entdeckung dieser Verbindungen stoßen zurzeit leider an ihre Grenzen. Neueste Entwicklungen auf den G ... mehr

  • Autoren

    Dr. Christian Derntl

    Christian Derntl, Jahrgang 1983, studierte Mikrobiologie und Immunologie an der Universität Wien mit Abschluss Diplom. Sein Doktoratsstudium im Fach Technische Chemie absolvierte er 2014 mit Auszeichnung an der Technischen Universität Wien. Dabei beschäftigte er sich mit der Regulation von ... mehr

    Sarah Spitz

    Sarah Spitz, Jahrgang 1993, studierte Biotechnologie an der Universität für Bodenkultur in Wien (BOKU) mit Abschluss Diplomingenieur. Während ihres Studiums war sie für zwei Jahre als wissenschaftliche Mitarbeiterin am Department für Biotechnologie (DBT) der BOKU angestellt. Nach einer inte ... mehr

    Prof. Dr. Peter Ertl

    Peter Ertl, Jahrgang 1970, studierte Lebensmittel- und Biotechnologie an der Universität für Bodenkultur, Wien. Im Anschluss promovierte er in Chemie an der University of Waterloo, Ontario, Kanada und verbrachte mehrere Jahre als Postdoc an der University of California, Berkeley, USA. 2003 ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: