q&more
Meine Merkliste
my.chemie.de  
Login  

News

Ein stabiler Kupfer-Katalysator für die CO2-Umwandlung

Free-Photos / Pixabay

Symbolbild

29.03.2021: Einen neuen Katalysator für die Umwandlung von Kohlendioxid (CO2) in Chemikalien oder Treibstoffe haben Forschende der Ruhr-Universität Bochum und Universität Duisburg-Essen entwickelt. Sie optimierten bereits verfügbare Kupfer-Katalysatoren, um ihre Selektivität und Langzeitstabilität zu verbessern. Die Ergebnisse beschreibt das Team um Dr. Yanfang Song und Prof. Dr. Wolfgang Schuhmann vom Bochumer Zentrum für Elektrochemie mit dem Team um Prof. Dr. Corina Andronescu von der Duisburg-Essener Arbeitsgruppe Technische Chemie III in der Zeitschrift Angewandte Chemie.

Bor macht Kupfer-Katalysator stabil

Das Klimagas CO2 lässt sich in größere Kohlenstoffverbindungen umwandeln, die als Grundchemikalien für die Industrie oder als Kraftstoffe genutzt werden können. Forschende verfolgen die Idee, CO2 elektrochemisch mithilfe regenerativer Energien umzusetzen. So würden nicht nur nützliche Produkte entstehen; diese würden gleichzeitig auch als Speicher für die erneuerbaren Energien dienen. Kupfer hat sich in früheren Studien bereits als vielversprechender Katalysator herausgestellt, allerdings muss es in Form eines teilweise positiv geladenen Ions vorliegen - und genau das stellt das Problem dar.

Unter herkömmlichen Reaktionsbedingungen wird Kupfer schnell von seiner positiv geladenen Form in den neutralen Zustand umgewandelt, was für die Bildung von Produkten mit mehr als zwei Kohlenstoffatomen ungünstig ist und so den Katalysator deaktiviert.

Das Team aus Bochum und Duisburg-Essen modifizierte daher einen Kupfer-Katalysator mit Bor. Die Forscherinnen und Forscher testeten verschiedene Kupfer-Bor-Verhältnisse und bestimmten die optimale Zusammensetzung, um das Entstehen von Verbindungen mit mehr als zwei Kohlenstoffatomen zu begünstigen. Sie zeigten außerdem, dass der Bor-Kupfer-Katalysator bei Stromdichten betrieben werden kann, wie sie im industriellen Maßstab erforderlich wären.

Zink verhindert Korrosionsschäden

Das System setzten sie in Form einer Gasdiffusionselektrode um, in der ein fester Katalysator die elektrochemische Reaktion zwischen der flüssigen und gasförmigen Phase katalysiert. Wichtig dabei ist, dass sich ausreichend CO2 in der Grenzregion zwischen Gas- und Flüssigphase löst. Das gelang den Wissenschaftlerinnen und Wissenschaftlern durch den Einsatz eines speziellen Bindemittels.

Eine weitere Herausforderung ist, das System über lange Zeit stabil zu halten. Es gilt beispielsweise, die Korrosion der Elektroden zu verhindern. Zu diesem Zweck integrierten die Chemikerinnen und Chemiker eine sogenannte Opferanode aus Zink in das System. Da Zink ein weniger edles Metall als Kupfer ist, wird dieses zuerst korrodiert, während das Kupfer verschont bleibt.

"Die Kombination aus einem selektiven und aktiven Katalysatormaterial in einer Gasdiffusionselektrode und dem Zusatz des stabilisierenden Zinks ist ein wichtiger Schritt in Richtung der stofflichen Nutzung von CO2", resümiert Wolfgang Schuhmann.

Originalveröffentlichung:
Yanfang Song, João R. C. Junqueira, Nivedita Sikdar, Denis Öhl, Stefan Dieckhöfer, Thomas Quast, Sabine Seisel, Justus Masa, Corina Andronescu, Wolfgang Schuhmann; "B-Cu-Zn-Gasdiffusionselektroden für die elektrokatalytische CO2-Reduktion zu C2+-Produkten bei hohen Stromdichten."; Angewandte Chemie

Fakten, Hintergründe, Dossiers

  • Universität Duisburg-Essen
  • Kupfer-Katalysatoren

Mehr über Ruhr-Universität Bochum

  • News

    Leistungsfähige Multi-Element-Katalysatoren schnell identifizieren

    Unter Tausenden Möglichkeiten die beste Materialzusammensetzung zu finden gleicht der Suche nach der Stecknadel im Heuhaufen. Ein internationales Team kombiniert dazu Computersimulationen und Hochdurchsatz-Experimente. Katalysatoren aus mindestens fünf chemischen Elementen könnten der Schlü ... mehr

    Wie Bakterien Bakterien jagen

    Räuberische Bakterien, die sich von anderen Bakterien ernähren, nimmt das Forschungsteam um Dr. Christine Kaimer vom Lehrstuhl Biologie der Mikroorganismen der Ruhr-Universität Bochum (RUB) unter die Lupe. Durch mikroskopische Untersuchungen und Proteinanalysen konnten sie die Strategien be ... mehr

    Wasserstoff-produzierendes Enzym schützt sich selbst vor Sauerstoff

    Wasserstoff-produzierende Enzyme gelten als Hoffnungsträger der Biowasserstoff-Forschung. Allerdings sind sie so anfällig gegen Luftsauerstoff, dass sie bisher nicht in größerem Maßstab eingesetzt werden können. Die erst vor Kurzem entdeckte [FeFe]-Hydrogenase CbA5H aus dem Bakterium Clostr ... mehr

  • q&more Artikel

    Maßgeschneiderte Liganden eröffnen neue Reaktionswege

    Zum ersten Mal konnte ein effizienter Katalysator für die palladiumkatalysierten C–C-Bindungs-knüpfungen zwischen Arylchloriden und Alkyllithium-Verbindungen gefunden werden. Diese Reaktion ermöglicht einfachere Synthesewege für wichtige Produkte. mehr

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Henning Steinert

    Henning Steinert, Jahrgang 1993, studierte an der Carl‑von‑Ossietzky Universität Oldenburg Chemie, wo er sich unter anderem mit der Aktivierung von Si–H-Bindungen an Titankomplexen beschäftigte. Aktuell promoviert er an der Ruhr-Universität Bochum am Lehrstuhl für Anorganische Chemie II von ... mehr

    Prof. Dr. Viktoria Däschlein-Gessner

    Viktoria Däschlein-Gessner, Jahrgang 1982, studierte Chemie an den Universitäten Marburg und Würzburg und promovierte im Jahr 2009 an der TU Dortmund. Nach einem Postdoc-Aufenthalt an der University of California in Berkeley (USA) leitete sie eine Emmy-Noether-Nachwuchsgruppe an der Univers ... mehr

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.