10.03.2021 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Zellen als Computer

Solche neuprogrammierten Zellen könnten in unserem Körper medizinische Aufgaben wahrnehmen, etwa Krankheiten diagnostizieren oder therapieren

Wissenschaftler der ETH Zürich sind dran, informationsverarbeitende Schaltsysteme in biologischen Zellen zu entwickeln. Sie haben nun zum ersten Mal in menschlichen Zellen eine Oder-​Schaltung entwickelt. Diese reagiert auf unterschiedliche Signale.

Biologische Zellen sollen dereinst mit künstlichen genetischen Programmen ausgestattet werden, die ähnlich funktionieren wie elektronische Systeme. Solche neuprogrammierten Zellen könnten in unserem Körper medizinische Aufgaben wahrnehmen, etwa Krankheiten diagnostizieren oder therapieren. Eine Anwendung wären veränderte Immunzellen, die Tumorzellen bekämpfen. Da Tumorzellen unterschiedliche genetische Ausprägungen haben, müsste in den bekämpfenden Zellen zum Beispiel folgendes biochemisches Programm laufen: «Bekämpfe eine andere Zelle, wenn sie vom Typ X oder Y oder Z ist».

In der Mathematik und der Elektronik wird eine solche Funktion als Oder-​Gatter bezeichnet. «Man braucht sie bei Entscheidungsprozessen immer dann, wenn mehrere Sachen zum gleichen Ergebnis führen, wenn man mit unterschiedlichen Inputs zur gleichen Zeit umgehen muss», erklärt Jiten Doshi, Doktorand in der Gruppe von ETH-​Professor Yaakov Benenson am Departement für Biosysteme der ETH Zürich in Basel. Doshi und Benenson haben zusammen mit Kollegen zum ersten Mal in menschlichen Zellen ein sogenanntes Oder-​Gatter entwickelt. Also eine molekulare Schalteinheit, die ein biochemische Output-​Signal abgibt, wenn sie eines von zwei oder mehreren biochemischen Input-​Signalen misst.

Bisherige in biologischen Zellen umgesetzte Oder-​Gatter waren einfach gestrickt, wie Benenson erklärt. Soll beispielsweise eine Zelle als Antwort auf Signal X oder auf Signal Y einen Wirkstoff ausschütten, so kombinierten Wissenschaftler bisher zwei Systeme: eines, das den Wirkstoff als Antwort auf Signal X ausschüttete, und ein anderes, das den Wirkstoff als Antwort auf Signal Y freisetzte. Im Gegensatz dazu ist das neue Oder-​Gatter der ETH-​Wissenschaftler ein echtes Oder-​Gatter, bei dem es sich um ein einziges System handelt. Wie bei allen biologischen Systemen liegt die Information als DNA-​Sequenz vor. Diese ist beim neuen Gatter wesentlich kürzer, weil es sich um ein System handelt und nicht um zwei separate.

Von der Natur inspiriert

Um das Oder-​Gatter zu realisieren, benutzen die ETH-​Forschenden die Transkription, jenen zellulären Prozess, bei dem die Information von einem Gen abgelesen und in Form eines Boten-​RNA-Moleküls gespeichert wird. In Gang gebracht wird dieser Prozess von bestimmten Steuerungsmolekülen (Transkriptionsfaktoren), die sich auf spezifische Weise an eine «Aktivierungssequenz» (Promotor) im Anfangsberiech eines Gens heften. Dabei gibt es auch Gene mit mehreren solchen Aktivierungssequenzen. Ein Beispiel dafür ist ein Gen namens CIITA, das bei Menschen vier solche Sequenzen aufweist.

Die ETH-​Forschenden liessen sich von diesem Gen inspirieren und entwickelten synthetische Konstrukte mit einem Gen, das für die Herstellung eines fluoreszierenden Farbstoffs verantwortlich ist und das drei Aktivierungssequenzen hat. An diese Sequenzen heften sich spezifisch jeweils ein bis drei Transcriptionsfaktoren und kleine RNA-​Moleküle. Das Genkonstrukt produziert den Farbstoff, wenn die Transkription über mindestens eine der drei Aktivierungssequenzen gestartet wird – also über die Sequenz 1 oder die Sequenz 2 oder die Sequenz 3. Die Forschenden haben das neue System patentieren lassen.

Ein Kreis schliesst sich

Die Forschung schliesst einen Kreis, wie ETH-​Professor Benenson betont. Historisch betrachtet hat sich die Informationsverarbeitung während der Evolution in Lebewesen entwickelt: Menschen und Tiere sind mit ihren Gehirnen sehr gut darin, sensorischen Input aufzunehmen, zu verarbeiten und entsprechend zu reagieren. Erst ab dem 19. Jahrhundert begann dann die Entwicklung von schaltbaren Elektronikbauteilen, zunächst mit dem Relais, später mit Elektronenröhren und schliesslich mit Transistoren, welche den Bau von Computern ermöglicht haben.

In ihrer Forschung versuchen die ETH-​Bioingenieure diese mathematischen und elektronischen Ansätze der Informationsverarbeitung zurück in biologische Systeme zu bringen. «Dies hilft uns einerseits, die Biologie besser zu verstehen, beispielsweise wie in Zellen biochemische Entscheidungsprozesse ablaufen. Andererseits können wir damit neue biologische Funktionen entwickeln», sagt Benenson. Zugute kommt den Forschenden, dass biologische Zellen dafür beste Voraussetzungen bieten.

Komplexere Diagnostik-​ und Therapieformen

Zur Anwendung kommen soll die zelluläre Informationsverarbeitung vor allem in der medizinischen Diagnostik und Therapie. «Heutige medizinische Therapien sind meist simpel: Wir therapieren Krankheiten oft nur mit einem einzigen Medikament, unabhängig davon, wie komplex die Biologie und die Ursachen von Krankheiten auch sein mögen», sagt Benenson. Dies stehe im Gegensatz dazu, wie ein Organismus mit Veränderungen von aussen umgeht. Stressreaktionen des Körpers beispielsweise können sehr komplex sein.

«Unser Ansatz der biomolekularen Informationsverarbeitung verspricht, in Zukunft mit künstlichen genetischen Netzwerken, die verschiedene Signale erkennen und verarbeiten können, komplexe zelluläre Diagnostiksysteme und potenziell wirksamere Therapieformen zu entwickeln», sagt Benenson. Solche Therapieformen würden etwa auch erkennen, wenn nach erfolgreicher Therapie ein Normalzustand erreicht ist. Eine ideale Krebstherapie beispielsweise bekämpft Tumorzellen, solange diese im Körper vorhanden sind, bekämpft aber kein gesundes Gewebe, denn dies würde im Körper Schaden anrichten.

Fakten, Hintergründe, Dossiers

  • Zellen

Mehr über ETH Zürich

  • News

    Hochpräzise Frequenzmessung

    Viele wissenschaftliche Experimente setzen voraus, dass die Zeit mit Hilfe einer klar definierten Frequenz mit hoher Präzision gemessen werden kann. Ein neuer Ansatz erlaubt es nun, die Frequenzmessung im Labor direkt mit der Atomuhr in Bern zu vergleichen. Für viele wissenschaftliche Exper ... mehr

    Mit AI zu neuen Arzneistoffen nach dem Vorbild der Natur

    Artificial Intelligence (AI) kann gezielt die biologische Aktivität von Naturstoffen erkennen, wie Forschende der ETH Zürich gezeigt haben. Darüber hinaus hilft AI, Moleküle zu finden, welche die gleiche Wirkung wie ein Naturstoff haben, aber einfacher in der Herstellung sind. Der Pharmafor ... mehr

    Die Achillesferse des Coronavirus

    Das Sars-​CoV-2-Virus ist für die Produktion seiner Proteine auf einen speziellen Mechanismus angewiesen. Ein Forscherteam unter der Leitung einer Forschungsgruppe an der ETH Zürich konnte nun molekulare Einblicke in die Proteinproduktion des Virus gewinnen. Das Team zeigt zudem auf, wie ch ... mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: