08.03.2021 - Universität zu Köln

Modell kann Entwicklung von Antibiotikaresistenzen bei Bakterien voraussagen

Modell sagt Wachstumsraten und Resistenzentwicklung gängiger Bakterienmutanten bei unterschiedlichen Medikamentendosierungen vorher

Ein Team von Wissenschaftlern der Uni Köln und der Universität in Uppsala (Schweden) hat ein Modell erstellt, das beschreiben und vorhersagen kann, wie sich Antibiotikaresistenzen bei Bakterien entwickeln. Die Resistenzen gegen Antibiotika entstehen durch eine Vielzahl von Mechanismen. Eine zentrale und bisher ungelöste Frage ist, wie die Resistenzentwicklung das Zellwachstum bei unterschiedlichen Wirkstoffkonzentrationen beeinflusst. Die Forscher entwickelten nun ein Modell, das Wachstumsraten und Resistenzniveaus gängiger resistenter Bakterienmutanten bei unterschiedlichen Medikamentendosierungen vorhersagt. Diese Vorhersagen werden durch empirische Wachstumshemmungskurven und genomische Daten von Escherichia coli-Populationen bestätigt.

Resistenzen entstehen durch Evolution. Bakterien verändern ihr Genom und werden unempfindlicher gegen Medikamente. Resistenzmutationen haben für die Bakterien allerdings in Abwesenheit von Antibiotika oft einen Preis. Die mutierten Zellen wachsen zwar in Gegenwart des Medikaments stärker, in einer medikamentenfreien Umgebung ist das Wachstum allerdings geringer als beim antibiotika-anfälligen Wildtyp. „Die Zellen müssen die Entscheidung über Resistenz optimieren. Wir haben ein Modell erstellt, das diesen Prozess beschreibt“, so Erstautorin Fernanda Pinheiro vom Institut für Biologische Physik der Uni Köln. Sie vergleicht dies mit einem Unternehmer, der Häuser baut und verkauft: „Die Häuser wurden mit einem festen Budget gebaut. Je nach Standort muss man mehr oder weniger in den Schutz vor Kälte investieren und dafür Abstriche beim Design machen. Ein hässliches Haus verkauft sich aber auch schlecht. In ähnlicher Weise entscheidet die Evolution der Bakterien darüber, wievel Proteine in die Antibiotikaresistenz investiert werden.

Diese Vorhersage ist sehr schwierig, weil das Bakterium oft mehrere Optionen hat, um Abwehrkräfte aufzubauen. „Überraschenderweise sagt unser Modell erfolgreich voraus, welche Mechanismen der Antibiotikaresistenz sich in einer Bakterienpopulation unter bestimmten Voraussetzungen wahrscheinlich entwickeln werden“, so Pinheiro. „Um im Bilde des Hausbaus zu bleiben: Um das Haus warm zu halten, kann man zum Beispiel in dicke Fenster oder in die Heiztechnik investieren. Was besser ist, entscheidet sich aus dem Ganzen, denn im Bakterium stehen die verschiedenen Zellteile in Abhängigkeiten. Mutationen verändern diese Teile und hinterlassen Spuren im Wachstumsmuster, die wiederum genutzt werden können, um etwas über den Evolutionsprozess zu lernen und letztendlich die Evolution vorherzusagen“, erklärt Pinheiro.

Antibiotikaresistente Bakterien gefährden die Antibiotikabehandlung von Millionen von Menschen weltweit und verursachen jedes Jahr Hundertausende von Todesfällen. Im Jahr 2019 hat die WHO die Antibiotikaresistenz in ihre Liste der 10 größten Bedrohungen für die globale Gesundheit aufgenommen. Das Wissen um die Entwicklung von Antibiotikaresistenzen kann daher helfen, optimale Behandlungsprotokolle, Angriffspunkte für Medikamente und neue Antibiotika-Kandidaten zu identifizieren. Die neuen Erkenntnisse können nützlich sein, um bessere Entscheidungen über den Einsatz von Antibiotika zu treffen. „Wenn wir antizipieren können, was Bakterien unter verschiedenen Umständen wahrscheinlich tun werden, können wir gezielter über Interventionen nachdenken, um die Evolution von Resistenz zu vermeiden“, so Pinheiro.

Fakten, Hintergründe, Dossiers

  • Antibiotikaresistenzen
  • Bakterien
  • Zellwachstum
  • Antibiotika

Mehr über Uni Köln

  • News

    Proteingleichgewicht im Fortpflanzungssystem kann Krankheiten verhindern

    Eine aktuelle Studie zeigt, dass ein gesundes Fortpflanzungssystem krankheitsbedingte Proteinansammlungen in entfernten Geweben, wie etwa Neuronen, und die Veränderung von Mitochondrien – den Kraftwerken der Zellen - verhindern kann. Ein Ungleichgewicht von Proteinen, zum Beispiel eine Ansa ... mehr

    40 Jahre alter Katalysator birgt Überraschungen für die Wissenschaft

    Der Katalysator “Titansilikalit-1“ (TS-1) ist nicht neu: Schon vor fast 40 Jahren wurde er entwickelt und seine Fähigkeit entdeckt, Propylen in Propylenoxid, eine wichtige Grundchemikalie in der Chemieindustrie, umzuwandeln. Jetzt hat ein Wissenschaftlerteam der ETH Zürich, der Universität ... mehr

    Reparatur statt Neubau: Beschädigte Zell-Kraftwerke haben eigenen “Werkstatt-Modus”

    Eine durch Schäden gestörte Energieversorgung der Zelle kann sich selbst vor Funktionseinbußen schützen und in einer Art Werkstatt-Modus reparieren. Das zeigt ein neues Paper von der Molekularbiologin Professorin Dr. Aleksandra Trifunovic und Dr. Karolina Szcepanowska, einer leitenden Wisse ... mehr

  • q&more Artikel

    Goldplasma macht unsichtbare Strukturen sichtbar

    Die Mikro-Computertomographie (μCT) ist in den letzten Jahren zu einer Standardmethode in vielen medizinischen, wissenschaftlichen und industriellen Bereichen geworden. Das bildgebende Verfahren ermöglicht die zerstörungsfreie, dreidimensionale Abbildung verschiedenster Strukturen. mehr

  • Autoren

    Peter T. Rühr

    Peter T. Rühr, Jahrgang 1988, studierte Biologie mit Schwerpunkt auf der Kopfmorphologie von Ur-Insekten am Zoologischen Forschungsmuseum Alexander Koenig und an der Rheinischen Friedrich-Wilhelms-Universität Bonn, wo er 2017 seinen Masterabschluss erhielt. Seit 2018 promoviert er an der Un ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: