q&more
Meine Merkliste
my.chemie.de  
Login  

News

Zellen sprechen sich bei ihrer Entwicklung ab

Neu entwickeltes Konzept beschreibt, wie Zellen sich mit Hilfe von Zell-Zell-Kommunikation entwickeln und spezialisieren

MPI für molekulare Physiologie

Modell zeigt, wie Zell-Zell-Kommunikation in einer wachsenden Population die Differenzierung und ein stabiles Verhältnis versch. Zelltypen auslösen kann (oben) und auch wiederherstellen kann (mitte, unten), wenn Zelltypen durch Störungen getrennt werden.

23.02.2021: Während der Entwicklung eines Organismus müssen sich die Zellen in einem definierten Zeitplan spezialisieren und bestimmte Funktionen ausbilden: So entsteht aus einem Haufen Zellen strukturiertes Gewebe. Die Forschungsgruppe von Aneta Koseska (ehem. Max-Planck-Institut für molekulare Physiologie (MPI), caesar Bonn) hat am MPI nun ein neues theoretisches Konzept entwickelt, das zeigt, wie sich Zellen durch ihre Kommunikation untereinander abstimmen, um sich in den richtigen Anteilen zu spezialisieren und so neue Strukturen zu bilden.

Stammzellen sind die Alleskönner unter den Zellen im Körper. Sie können sich zu verschiedenen Zelltypen, wie Hautzellen, Nervenzellen oder Knochenzellen, spezialisieren. So entstehen während der frühen embryonalen Entwicklung aus einem ungeordneten Haufen von Stammzellen geordnete Körperstrukturen mit lebenswichtigen Aufgaben. Die Information zur Spezialisierung ist in der Erbinformation der Stammzellen gespeichert. Ein Bauplan für die Ausbildung von Körperstrukturen enthalten die Stammzellen aber nicht. Dabei muss zur richtigen Zeit und mit hoher Präzision die Ausbildung verschiedener Gewebe koordiniert werden. Wie genau dieser komplexe Prozess koordiniert wird, ist immer noch unklar.

Zellen handeln in einer Gemeinschaft

Bisher ist man davon ausgegangen, das die Koordination dieser Prozesse vornehmlich auf dem Level einzelner, unabhängig voneinander handelnder Zellen erfolgt. Diese erhalten ein Signal aus ihrer Umwelt, das die Herstellung von genetischen Markern auslöst. So bilden sich in jeder Zelle bestimmte Genmuster, die dazu führen, dass sich die Stammzellen zu einer Zelle mit einer bestimmten Funktion entwickeln. In diesem Rahmen ist es jedoch schwer zu beschreiben, wie bestimmte Anteile verschiedener Zelltypen erzeugt werden, und wie der Zeitpunkt der Spezialisierung bestimmt wird.

Die Gruppe um Aneta Koseska hat nun ein vollkommen neues theoretisches Konzept zur Beschreibung der zellulären Entwicklung aufgestellt, basierend auf Mechanismen der Zellkommunikation. Mit dieser veränderten Sichtweise können die Wissenschaftler beschreiben, wie z. B. das richtige Timing bei der Entwicklung zu einem Gewebe garantiert werden kann, und wie die Entwicklung trotz Störungen robust und präzise abläuft. Die Wissenschaftler vermuten, dass so das Wachstum der Zellgemeinschaft das Schicksal einzelner Zellen steuert.

Theoretische Konzepte haben eine erfolgreiche Geschichte in der Biologie

Die Basis für die Entwicklung solcher Konzepte bilden mathematische Modellierungen. Dabei wird versucht, die wesentlichen Mechanismen und Größen eines biologischen Prozesses in Modellen zu erfassen. Mit Hilfe dieser künstlichen Laboratorien kann das komplexe Geschehen in der Zelle berechenbar gemacht werden. Es lassen sich Voraussagen treffen, die experimentell getestet werden können. „Eine solche Forschung scheint sehr abstrakt, doch theoretische Konzepte haben in der Biologie eine lange und erfolgreiche Geschichte“ erklärt Aneta Koseska. Eines der bekanntesten Beispiel ist Darwins Evolutionstheorie, die später von anderen Wissenschaftlern mit mathematischen Modellen beschrieben wurde. Eine Theorie gibt uns eine Möglichkeit zu verstehen: "Wie funktioniert ein biologischer Prozess, was ist der Mechanismus dahinter?" Das Zusammenspiel von Theorie und Experimenten ermöglicht die Aufklärung besonders komplexer Phänomene.

Zell-Zell-Kommunikation als allgemein gültiger Prozess

Die Kommunikation zwischen Zellen spielt auch bei weiteren wichtigen Prozessen wie der Wundheilung eine entscheidene Rolle. Denn auch hier müssen Zellen dynamisch auf ihre Umgebung reagieren. „Mit unserem neu entwickelten Konzept wollen wir dies in Zukunft sowohl theoretisch als auch experimentell im Detail untersuchen“, sagt Aneta Koseska.

Originalveröffentlichung:
Stanoev A, Schröter C, Koseska A (2021) Robustness and timing of cellular differentiation through population-based symmetry breaking, Development 2021 148, Published 15 February 2021

Fakten, Hintergründe, Dossiers

  • Zellen
  • Zellkommunikation

Mehr über MPI für molekulare Physiologie

  • News

    Protein-Kanülen für die Medizin

    Mit einem Arsenal von Giftstoffen können Krankheitserreger befallene Organismen schädigen. Es gibt z.B. Bakterien, wie den Erreger der Pest, die ihr Gift mit einem Injektionsapparat in die Wirtszelle einschleusen. Stefan Raunser, Direktor am Max-Planck-Institut für molekulare Physiologie in ... mehr

Mehr über Max-Planck-Gesellschaft

  • News

    Krebserregende Bakterien auf frischer Tat ertappt

    Escherichia coli-Bakterien sind ein integraler Bestandteil des menschlichen Darmmikrobioms. Einige Stämme produzieren jedoch ein Erbgut-schädigendes Genotoxin namens Colibactin, welches im Verdacht steht, Darmkrebs zu verursachen. Zwar wurde mittlerweile gezeigt, dass Colibactin zu hochspez ... mehr

    Spermien auf dem richtigen Weg

    Ein wesentlicher Bestandteil aller eukaryotischen Zellen ist das Zytoskelett. Mikrotubuli, winzige Röhrchen, die aus einem Protein namens Tubulin bestehen, sind Teil dieses Zellskeletts. Zilien und Geißeln, antennenartige Strukturen, die aus den meisten Zellen unseres Körpers herausragen, e ... mehr

    High Speed-Modell für den Kampf gegen Corona

    Bevor Therapien gegen Sars-CoV am Menschen getestet und allgemein zugänglich gemacht werden, muss ihre Wirkung an Tieren untersucht und optimiert werden. Die Maus ist ein in der Medizin häufig eingesetzter Modellorganismus. Da sich Rezeptormoleküle zwischen Menschen und Mäusen so stark unte ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.