q&more
Meine Merkliste
my.chemie.de  
Login  

News

Wie Bakterien Bakterien jagen

Die Räuber-Beute-Verhältnisse unter Bakterien könnten Ideen für neue antibakterielle Strategien liefern

© Biologie der Mikroorganismen

So sieht es aus, wenn ein Bakterium Beute macht.

18.02.2021: Räuberische Bakterien, die sich von anderen Bakterien ernähren, nimmt das Forschungsteam um Dr. Christine Kaimer vom Lehrstuhl Biologie der Mikroorganismen der Ruhr-Universität Bochum (RUB) unter die Lupe. Durch mikroskopische Untersuchungen und Proteinanalysen konnten sie die Strategien beobachten, die das Bodenbakterium Myxococcus xanthus anwendet. Es kombiniert mehrere Mechanismen, je nachdem, wie das Beutebakterium beschaffen ist, und arbeitet, wenn nötig, auch in Gruppen. Die Erkenntnisse könnten künftig helfen, antibakterielle Strategien zu entwickeln.

Bakteriengruppen auf Nahrungssuche

Räuber-Beute-Beziehungen sind uns vor allem aus dem Tierreich bekannt, sie gehören aber auch zur Überlebensstrategie bestimmter Bakterien: Bakterielle Räuber, Prädatoren genannt, töten gezielt Bakterien einer anderen Art ab, um sich von ihnen zu ernähren. Zu den räuberischen Arten zählen viele Myxobakterien, die im Boden weit verbreitet sind und einzigartige Verhaltensmuster zeigen: Zahlreiche Einzelzellen finden sich zu großen Gruppen zusammen, die gemeinsam auf Nahrungssuche gehen oder, bei Nährstoffmangel, dreidimensionale Fruchtkörper bilden. „Die Bewegungsmechanismen der Myxobakterien sind recht gut untersucht, aber zu den molekularen Vorgängen der Prädation und ihrer Bedeutung in komplexen Bakteriengemeinschaften sind noch viele Fragen offen“, so Christine Kaimer.

Das Team der Bochumer Biologie untersucht das bakterielle Prädationsverhalten am Modell des Bodenbakteriums Myxococcus xanthus, von dem bekannt ist, dass es ein breites Spektrum unterschiedlicher Mikroorganismen als Beute nutzen kann. „In dieser Arbeit sind wir der Frage nachgegangen, welche Mechanismen dieser Räuber verwendet, um strukturell unterschiedliche Beutebakterien abzutöten“, erklärt Kaimer. „Dazu haben wir das Prädationsverhalten von M. xanthus gegenüber unterschiedlichen Beutebakterien im Mikroskop genau beobachtet und außerdem die Wirksamkeit verschiedener Proteinfraktionen der Räuberzellen verglichen.“

Direkter Kontakt oder Kontakt in Kombination mit Proteinen

Die Beobachtungen haben gezeigt, dass wohl mehrere Mechanismen unterschiedlich miteinander kombiniert werden: Die Beutezellen werden zunächst von einer Räuberzelle im direkten Zell-Zell-Kontakt getötet. Für Gram-negative Beutebakterien mit einer dünnen Zellwand reicht das aus, um die Zelle auch aufzulösen und an die Nährstoffe im Innern zu gelangen. Zum Zersetzen von Gram-positiven Beutebakterien mit einer dicken Zellwand braucht der Räuber zusätzliche Proteine, die er in die Umgebung freisetzt. „Dafür scheint auch die Bildung größerer Räubergruppen besonders wichtig zu sein“, beschreibt Christine Kaimer.

Die Erkenntnisse sind für die Forschenden ein wichtiger Ausgangpunkt für die weitere Aufklärung der bakteriellen Prädationsmechanismen. Längerfristig erhoffen sie sich Einblicke in die dynamischen Interaktionen in bakteriellen Gemeinschaften und möglicherweise Impulse zur Entwicklung neuer antibakterieller Strategien.

Originalveröffentlichung:
Kirstin Arend, Janka Schmidt, Tim Bentler, Carina Lüchtefeld, Daniel Eggerichs, Hannah Hexamer, Christine Kaimer; "Myxococcus xanthus predation of gram-positive or gram-negative bacteria is mediated by different bacteriolytic mechanisms"; Applied and Environmental Microbiology; 2021

Fakten, Hintergründe, Dossiers

  • Bakterien
  • Myxococcus xanthus
  • Myxobakterien

Mehr über Ruhr-Universität Bochum

  • News

    Ein stabiler Kupfer-Katalysator für die CO2-Umwandlung

    Einen neuen Katalysator für die Umwandlung von Kohlendioxid (CO2) in Chemikalien oder Treibstoffe haben Forschende der Ruhr-Universität Bochum und Universität Duisburg-Essen entwickelt. Sie optimierten bereits verfügbare Kupfer-Katalysatoren, um ihre Selektivität und Langzeitstabilität zu v ... mehr

    Leistungsfähige Multi-Element-Katalysatoren schnell identifizieren

    Unter Tausenden Möglichkeiten die beste Materialzusammensetzung zu finden gleicht der Suche nach der Stecknadel im Heuhaufen. Ein internationales Team kombiniert dazu Computersimulationen und Hochdurchsatz-Experimente. Katalysatoren aus mindestens fünf chemischen Elementen könnten der Schlü ... mehr

    Wasserstoff-produzierendes Enzym schützt sich selbst vor Sauerstoff

    Wasserstoff-produzierende Enzyme gelten als Hoffnungsträger der Biowasserstoff-Forschung. Allerdings sind sie so anfällig gegen Luftsauerstoff, dass sie bisher nicht in größerem Maßstab eingesetzt werden können. Die erst vor Kurzem entdeckte [FeFe]-Hydrogenase CbA5H aus dem Bakterium Clostr ... mehr

  • q&more Artikel

    Maßgeschneiderte Liganden eröffnen neue Reaktionswege

    Zum ersten Mal konnte ein effizienter Katalysator für die palladiumkatalysierten C–C-Bindungs-knüpfungen zwischen Arylchloriden und Alkyllithium-Verbindungen gefunden werden. Diese Reaktion ermöglicht einfachere Synthesewege für wichtige Produkte. mehr

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Henning Steinert

    Henning Steinert, Jahrgang 1993, studierte an der Carl‑von‑Ossietzky Universität Oldenburg Chemie, wo er sich unter anderem mit der Aktivierung von Si–H-Bindungen an Titankomplexen beschäftigte. Aktuell promoviert er an der Ruhr-Universität Bochum am Lehrstuhl für Anorganische Chemie II von ... mehr

    Prof. Dr. Viktoria Däschlein-Gessner

    Viktoria Däschlein-Gessner, Jahrgang 1982, studierte Chemie an den Universitäten Marburg und Würzburg und promovierte im Jahr 2009 an der TU Dortmund. Nach einem Postdoc-Aufenthalt an der University of California in Berkeley (USA) leitete sie eine Emmy-Noether-Nachwuchsgruppe an der Univers ... mehr

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.