05.02.2021 - Albert-Ludwigs-Universität Freiburg

Hierarchische Dynamik

Forschende untersuchen die auf vielen Zeitskalen stattfindenden Signalübertragung in Proteinen

Ein Baum, der sich im Wind bewegt: Wie lange dauert es, bis die Bewegung eines Zweiges am Baumstamm ankommt? Und über welchen Weg überträgt sich diese Bewegung? Diese Fragen übertragen Forschende der Albert-Ludwigs-Universität auf Proteine, die molekularen Maschinerien der Zelle. Ein Team um Prof. Dr. Thorsten Hugel von Institut für Physikalische Chemie sowie Dr. Steffen Wolf und Prof. Dr. Gerhard Stock von Institut für Physik untersucht, wie die Signale, die in Proteinen strukturelle Veränderungen hervorrufen, von einem Ort zum anderen gelangen und wie schnell das geschieht. Da bei solchen Signalweiterleitungen viele Zeitskalen, von Nanosekunden bis Sekunden, involviert sind, konnten Wissenschaftlerinnen und Wissenschaftler den genauen Ablauf bisher nicht analysieren. Indem sie verschiedene Experimente, Simulationen und theoretische Studien kombiniert haben, ist es den Freiburger Forschern nun aber gelungen. Ihre Ergebnisse veröffentlichten sie in der Fachzeitschrift Chemical Science.

Im Gegensatz zu Bäumen laufen Bewegungen bei dem für die Studie untersuchten Protein Hsp90 auf logarithmischen Zeitskalen ab: Jede größere Bewegung braucht etwa zehnmal so lange wie die kleinen einzelnen Bewegungen, aus denen die größere besteht. „So würde sich zum Beispiel ein Zweig im Sekundentakt, der Ast im 10-Sekundentakt und der Stamm im 100-Sekundentakt bewegen“, erläutert Wolf. Die unterschiedlichen Untersuchungsmethoden ermöglichten den Forschenden, eine allosterische Wechselwirkung zu beschreiben, also zu zeigen, wie ein Reaktionsprozess in Hsp90 eine entfernte Proteinbindungsstelle verändert. Das Team fand heraus, dass dieser allosterische Prozess über eine hierarchische Dynamik erfolgt, die Zeitskalen von Nano- bis Millisekunden und Längenskalen von Pico- bis zu mehreren Nanometern umfasst, so Stock.

Zudem ist der Reaktionsprozess in Hsp90 an eine Strukturveränderung der einzelnen Aminosäure Arg380 gekoppelt. Arg380 leitet wiederum die Strukturinformationen an eine Subdomäne des Proteins und schließlich an das gesamte Protein weiter. Die sich daraus ergebene veränderte Struktur schließt eine zentrale Bindungsstelle des Proteins, und ermöglicht dadurch, neue Funktionen zu erfüllen. Die Freiburger Forscher nehmen an, dass ähnliche hierarchische Mechanismen, wie dieser im Protein Hsp90 nachgewiesene, auch bei der Signalübertragung in anderen Proteine von grundlegender Bedeutung sind. Dies könnte für die Kontrolle von Proteinen durch Medikamenten nützlich sein, so Hugel.

Fakten, Hintergründe, Dossiers

  • Proteine

Mehr über Uni Freiburg

  • News

    Eine Fernsteuerung für den Gentransfer

    Die Möglichkeit, gewünschte Gene in tierische und menschliche Zellen einzufügen, ist die Grundlage der modernen lebenswissenschaftlichen Forschung sowie von weit verbreiteten biomedizinischen Anwendungen. Die bisher dafür verwendeten Methoden sind zumeist unspezifisch, so dass Wissenschaftl ... mehr

    Ein Gen sorgt für Schutz oder Zerstörung

    Die Enzymfamilie ENDOU kommt überall vor, und doch ist sie unverstanden. Beim Menschen wird sie mit der Entstehung von Krebs in Verbindung gebracht. Auch RNA-Viren wie SARS-CoV2 enthalten ein Gen, das dem ENDOU entspricht und eine große Rolle bei der Vermehrung des Virus spielt. Bislang wus ... mehr

    Bisher übersehene kleine Proteine in Bakterien

    Der biologische Prozess der Photosynthese steht am Beginn praktisch aller Nahrungsketten: Er produziert den Sauerstoff zum Atmen und liefert die energetische Grundlage für die klimaneutrale Herstellung von Treibstoffen sowie von Spezialchemikalien mittels biotechnologischer Verfahren. Forsc ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: