q&more
Meine Merkliste
my.chemie.de  
Login  

News

Fluoreszenzmikroskopie mit höchster Auflösung

Forscher vereinfachen das sogenannte MINFLUX-Mikroskop und können so extrem nah beieinanderliegende Moleküle unterscheiden und ihre Dynamik beobachten

F. Steiner

Fluoreszenzlebensdauer von Farbstoffen in konventioneller Konfokalmikroskopie (groß) und mittels p-MINFLUX.

21.01.2021: Erst vor wenigen Jahren wurde eine fundamental erscheinende Auflösungsgrenze der optischen Mikroskopie gesprengt, was 2014 zur Verleihung des Nobelpreises für Chemie führte. Seither hat es auf dem Gebiet der superauflösenden Mikroskopie einen weiteren Quantensprung gegeben, der die Auflösungsgrenze bis zur molekularen Dimension (1 nm) getrieben hat.

Wissenschaftlern um Professor Philip Tinnefeld (LMU) und Professor Fernando Stefani (Buenos Aires) ist es nun gelungen, das für die 1-nm-Auflösung notwendige sogenannte MINFLUX-Mikroskop zu vereinfachen. So konnten die Wissenschaftler extrem nah beieinanderliegende Moleküle unterscheiden und sogar die Dynamik ihrer Bewegungen unabhängig voneinander verfolgen. Zusätzliche Funktionen ermöglichen es ihnen zudem, die Art der beobachteten Moleküle zu unterscheiden. Die MINFLUX-Methode fragt den Ort jedes Moleküls ab, indem ein Laserfokus in der Nähe des Moleküls platziert wird. Die gemessene Fluoreszenzintensität dient dabei als Maß für den Abstand des Moleküls zum Mittelpunkt des Laserfokus. Die genaue Molekülposition lässt sich durch Triangulation erhalten, indem das Zentrum des Laserfokus nacheinander an verschiedenen Seiten relativ zum Molekül platziert wird.

Die Wissenschaftler ordneten die Laserpulse so geschickt in Ort und Zeit an, dass sie mit maximal möglicher Geschwindigkeit zwischen den Laserpositionen hin- und herschalten konnten. Zusätzlich erreichten sie mithilfe einer schnellen Elektronik eine zeitliche Auflösung, die im Bereich von Pikosekunden liegt und den elektronischen Übergängen in den Molekülen entspricht. Damit werden die Grenzen des Mikroskops ausschließlich von den Fluoreszenzeigenschaften der Farbstoffe bestimmt.

Mithilfe dieser neuen sogenannten p-MINFLUX (engl. pulsed)-Methode gelang es den Wissenschaftlern, die örtliche Verteilung der Fluoreszenzlebensdauer – die wichtigste Messgröße, um die Umgebung von Farbstoffen zu charakterisieren – mit einer Auflösung von 1 nm zu messen. Philip Tinnefeld erklärt: „Mit p-MINFLUX wird es möglich sein, Strukturen und Dynamik auf molekularer Ebene aufzudecken, die fundamental sind für unser Verständnis von Energietransferprozessen bis hin zu biomolekularen Reaktionen.“

Originalveröffentlichung:
Luciano A. Masullo et al.; "Pulsed Interleaved MINFLUX"; Nano Lett.; 2021, 21, 1, 840–846

Fakten, Hintergründe, Dossiers

Mehr über LMU

  • News

    Wie sich Zellen bewegen und warum sie nicht kleben bleiben

    Theoretische Physiker aus Berlin haben sich mit experimentellen Physikern aus München zusammengetan, um die Mechanik der Zellmigration – Ortsveränderungen von Zellen – genauer zu untersuchen. Die Zellgeschwindigkeit als Maß dafür, wie schnell sich eine Zelle bewegt, hängt bekanntermaßen von ... mehr

    Auch Bakterien können die Zeit messen

    Biologische Rhythmen sind in der Natur weit verbreitet: Für Pflanzen und Tiere ist gut belegt, dass ihre Lebensfunktionen von einer circadianen Uhr gesteuert werden und in Zyklen synchron zur Umwelt – etwa dem Tag-Nacht-Wechsel – ablaufen. Gestellt wird die innere Uhr von sogenannten Zeitge ... mehr

    Mit Nanopartikeln gegen Krebs

    Chemotherapien gegen Krebs haben häufig schwere Nebenwirkungen, da die verabreichten Medikamente auch für gesunde Zellen toxisch sind. Calciumphosphat und Citrat werden bereits seit einiger Zeit als vielversprechende Alternativen diskutiert, da sie zwar zum Zelltod führen, wenn sie in hohen ... mehr

  • q&more Artikel

    Code erkannt

    Der genetische Code codiert alle Informationen, die in jeder Zelle für die ­korrekte Funktion und Interaktion der Zelle mit der Umgebung notwendig sind. Aufgebaut wird er aus vier unterschiedlichen Molekülen, den so genannten ­kanonischen Watson-Crick-Basen Adenin, Cytosin, Guanin und Thymi ... mehr

  • Autoren

    Prof. Dr. Thomas Carell

    Thomas Carell, Jg. 1966, studierte Chemie und fertigte seine Doktorarbeit am Max-Planck Institut für Medizinische Forschung unter der Anleitung von Prof. Dr. Dr. H. A. Staab an. Nach einem Forschungs-aufenthalt in den USA ging er an die ETH Zürich in das Laboratorium für Organische Chemie u ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.