q&more
Meine Merkliste
my.chemie.de  
Login  

News

Auch Bakterien können die Zeit messen

Chronobiologen haben erstmals gezeigt, dass freilebende Bodenbakterien eine innere Uhr besitzen

pixabay.com

Symbolbild

14.01.2021: Biologische Rhythmen sind in der Natur weit verbreitet: Für Pflanzen und Tiere ist gut belegt, dass ihre Lebensfunktionen von einer circadianen Uhr gesteuert werden und in Zyklen synchron zur Umwelt – etwa dem Tag-Nacht-Wechsel – ablaufen. Gestellt wird die innere Uhr von sogenannten Zeitgebern, beispielsweise dem Tageslicht. Auf diese Weise können Lebewesen sich besser an rhythmische Veränderungen der Umwelt anpassen und evolutionäre Vorteile gewinnen. Obwohl Bakterien 12 Prozent der Biomasse auf der Erde ausmachen und sowohl ökologisch als auch für Gesundheit und Biotechnologie wichtig sind, ist über ihre circadiane Uhr nur wenig bekannt. Wissenschaftlern um die LMU-Chronobiologen Martha Merrow, Zheng Eelderink-Chen und Francesca Sartor ist es nun erstmals gelungen, circadiane Rhythmen bei einem nicht-photosynthetischen Bakterium nachzuweisen. Dies kann zu einem tiefgreifenderen Verständnis der molekularen Mechanismen dieses fundamentalen Prozesses beitragen.

Überzeugende Hinweise auf bakterielle innere Uhren fanden Forscher bisher nur bei Photosynthese betreibenden Bakterien wie dem Cyanobakterium Synechococcus. „Dies erscheint auch logisch, da sie Licht zur Energiegewinnung benötigen“, sagt Merrow. Ob auch nicht-photosynthetische Bakterien einen circadianen Rhythmus besitzen, untersuchten die Wissenschaftler nun am Beispiel des Bodenbakteriums Bacillus subtilis. Von diesem Bakterium ist bekannt, dass es Photorezeptoren für blaues Licht besitzt, die denjenigen ähneln, mit denen die innere Uhr des Pilzes Neurospora crassa gestellt wird.

Die Wissenschaftler verglichen mithilfe von Hochdurchsatz-Messungen die Genaktivität von B. subtilis bei konstanter Dunkelheit und bei Zyklen von je 12 Stunden Licht und 12 Stunden Dunkelheit. Zusätzlich untersuchten sie den Effekt von 24-Stunden-Zyklen der Inkubationstemperatur. Dabei konzentrierten sie sich auf zwei Gene: Das Gen ytvA codiert für den Fotorezeptor für blaues Licht und das Gen kinC für ein Enzym, das an der Bildung von Biofilmen und Sporen beteiligt ist. „Unsere Analysen zeigen, dass sich die Expression beider Gene mit dem 24h-Hell-Dunkel-Zyklus synchronisiert und dann unter konstanten Bedingungen weiter oszilliert“, sagt Merrow. „Wir haben damit zum ersten Mal nachgewiesen, dass freilebende nicht-photosynthetische Bakterien die Zeit messen können. Sie passen ihre molekularen Prozesse an die Tageszeit an, indem sie Licht und Temperatur als Zeitgeber nutzen.“

Die Wissenschaftler nehmen an, dass zahlreiche terrestrische Bakterien einen circadianen Rhythmus haben. Dies könnte auf viele grundlegende zelluläre Prozesse, die bisher nur unter statischen Bedingungen untersucht wurden, ein neues Licht werfen und beispielsweise auch für biotechnologische oder medizinische Anwendungen interessant sein.

Originalveröffentlichung:
Zheng Eelderink-Chen, Jasper Bosman, Francesca Sartor, Antony N. Dodd, Ákos T. Kovács, Martha Merrow; "A circadian clock in a nonphotosynthetic prokaryote"; Science Advances; 2021

Fakten, Hintergründe, Dossiers

  • innere Uhr
  • Bakterien
  • circadianer Rhythmus
  • Chronobiologie
  • Bacillus subtilis
  • Genaktivität

Mehr über LMU

  • News

    Fluoreszenzmikroskopie mit höchster Auflösung

    Erst vor wenigen Jahren wurde eine fundamental erscheinende Auflösungsgrenze der optischen Mikroskopie gesprengt, was 2014 zur Verleihung des Nobelpreises für Chemie führte. Seither hat es auf dem Gebiet der superauflösenden Mikroskopie einen weiteren Quantensprung gegeben, der die Auflösun ... mehr

    Mit Nanopartikeln gegen Krebs

    Chemotherapien gegen Krebs haben häufig schwere Nebenwirkungen, da die verabreichten Medikamente auch für gesunde Zellen toxisch sind. Calciumphosphat und Citrat werden bereits seit einiger Zeit als vielversprechende Alternativen diskutiert, da sie zwar zum Zelltod führen, wenn sie in hohen ... mehr

    Krebszellen molekular ausschalten

    LMU-Forscher haben ein Enzym identifiziert, das für Reparaturen im Erbgut erforderlich ist. Entfernt man dieses Enzym, gehen Zellen mit DNA-Schäden zugrunde: eine mögliche Strategie, um die Erkrankung zu behandeln. Krebserkrankungen zählen nach Herz-Kreislauf-Erkrankungen zu den häufigsten ... mehr

  • q&more Artikel

    Code erkannt

    Der genetische Code codiert alle Informationen, die in jeder Zelle für die ­korrekte Funktion und Interaktion der Zelle mit der Umgebung notwendig sind. Aufgebaut wird er aus vier unterschiedlichen Molekülen, den so genannten ­kanonischen Watson-Crick-Basen Adenin, Cytosin, Guanin und Thymi ... mehr

  • Autoren

    Prof. Dr. Thomas Carell

    Thomas Carell, Jg. 1966, studierte Chemie und fertigte seine Doktorarbeit am Max-Planck Institut für Medizinische Forschung unter der Anleitung von Prof. Dr. Dr. H. A. Staab an. Nach einem Forschungs-aufenthalt in den USA ging er an die ETH Zürich in das Laboratorium für Organische Chemie u ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.