26.11.2020 - Technische Universität Wien

Stabile Katalysatoren für die Energiewende

Neue Messungen zeigen: Bei Katalysatoren für Wasserstoffproduktion oder CO2-Recycling kommt es nicht nur auf das Material an, sondern auch auf seine atomare Oberflächenstruktur

Auf dem Weg zu einer CO2-neutralen Wirtschaft müssen wir eine ganze Reihe von Technologien perfektionieren – dazu zählt die elektrochemische Gewinnung von Wasserstoff aus Wasser, die Brennstoffzelle oder auch die Rückführung von Kohlendioxid aus der Atmosphäre in den Kohlenstoffkreislauf. All diese Technologien haben eines gemeinsam: Sie funktionieren nur, wenn man passende Katalysatoren verwendet. Seit vielen Jahren wird daher untersucht, welche Materialien dafür am besten geeignet sind.

An der TU Wien und am Comet Zentrum für Elektrochemie und Oberflächentechnologie CEST in Wiener Neustadt steht für solche Fragen eine weltweit einzigartige Kombination an Untersuchungsmethoden zur Verfügung. Gemeinsam konnte man nun zeigen: Entscheidend ist nicht nur das Material, sondern auch seine Orientierung. Je nachdem in welcher Richtung man einen Kristall schneidet und welche seiner Atome er somit an seiner Oberfläche der Außenwelt präsentiert, kann er ganz unterschiedliches Verhalten zeigen.

Effizienz oder Stabilität

„Für viele wichtige Prozesse in der Elektrochemie verwendet man oft teure Edelmetalle als Katalysatoren, etwa Iridiumoxid- oder Platinpartikel“, sagt Prof. Markus Valtiner vom Institut für Angewandte Physik der TU Wien (IAP). Tatsächlich sind das in vielen Fällen Katalysatoren mit besonders hoher Effizienz. Allerdings gibt es daneben auch noch weitere wichtige Punkte zu beachten, etwa die Stabilität eines Katalysators oder auch die Verfügbarkeit und Recyclingfähigkeit der Materialien. Das effizienteste Katalysatormaterial bringt wenig, wenn es ein seltenes Metall ist, sich bereits nach kurzer Zeit auflöst, sich chemisch verändert oder aus anderen Gründen unbrauchbar wird.

Aus diesem Grund sind andere, nachhaltigere Katalysatoren interessant, auch wenn sie weniger wirksam sind – Zinkoxid beispielsweise. Durch Kombination verschiedener Messmethoden kann man nun zeigen: Die Effektivität und auch die Stabilität solcher Katalysatoren lässt sich deutlich verbessern, wenn man darauf achtet, wie die Oberfläche der Katalysator-Kristalle auf atomarer Skala strukturiert ist.

Auf die Richtung kommt es an

Kristalle können unterschiedliche Oberflächen haben: „Stellen wir uns einen würfelförmigen Kristall vor, den wir in zwei Teile schneiden“, sagt Markus Valtiner. „Wir können den Würfel gerade in der Mitte durchschneiden, sodass zwei Quader entstehen. Oder wir schneiden ihn genau diagonal, im 45-Grad-Winkel. Die Schnittflächen, die wir in diesen beiden Fällen erhalten, sind unterschiedlich: An der Schnittfläche sitzen unterschiedliche Atome in unterschiedlichen Abständen voneinander. Daher können sich diese Oberflächen auch bei chemischen Prozessen sehr unterschiedlich verhalten.“

Zinkoxidkristalle sind nicht würfelförmig, sondern bilden wabenartige Sechsecke aus – aber auch dort gilt dasselbe: Auf die Anordnung der Atome an der Oberfläche kommt es an. „Wenn man genau den richtigen Oberflächenwinkel wählt, dann bilden sich dort mikroskopisch kleine dreieckige Vertiefungen aus, mit einem Durchmesser von nur wenigen Atomen“, berichtet Markus Valtiner. „Dort können sich dann wiederum Wasserstoffatome anlagern, es kommt zu Prozessen, die die Spaltung von Wasser in Wasserstoff unterstützen, dabei aber das Material gleichzeitig stabilisieren.“

Diese Stabilisierung konnte das Forschungsteam nun erstmals genau nachweisen: „Am Katalysator wird Wasser in Wasserstoff und Sauerstoff aufgespalten. Während dieser Prozess im Gange ist, können wir Flüssigkeitsproben entnehmen und untersuchen, ob sie Spuren des Katalysators enthalten“, erklärt Markus Valtiner. „Dafür muss die Flüssigkeit zuerst in einem Plasma stark erhitzt und in einzelne Atome aufgebrochen werden. Dann trennen wir sie in einem Massenspektrometer auf, sie werden Element für Element sortiert. Wenn der Katalysator stabil ist, sollte man kaum Atome aus dem Katalysatormaterial finden. Bei der Herstellung von Wasserstoff an den atomaren Dreiecksstrukturen konnten wir keinerlei Zersetzung des Materials feststellen.“ Dieser Stabilisierungseffekt ist erstaunlich stark – nun arbeitet das Team daran, Zinkoxid noch effizienter zu machen und das physikalische Prinzip dieser Stabilisierung auf andere Materialien zu übertragen.

Einzigartige Forschungsmöglichkeiten für die Energiewende

An der TU Wien werden atomare Oberflächenstrukturen schon seit vielen Jahren untersucht. „An unserem Institut wurden diese Dreiecksstrukturen vor Jahren erstmals nachgewiesen und auch theoretisch erklärt, und wir sind jetzt die ersten, die ihre Bedeutung für die Elektrochemie demonstrieren konnten“, sagt Markus Valtiner. „Das liegt daran, dass wir hier in der einzigartigen Situation sind, alle nötigen Forschungsschritte unter einem Dach vereinen zu können – von der Probenpräparation bis zur Simulation an Supercomputern, von der Mikroskopie im Ultrahochvakuum bis zum Praxistests in realistischen Umgebungen.“

„Diese Zusammenarbeit unterschiedlicher Spezialrichtungen unter einem Dach ist einzigartig, und unser großer Vorteil, um auf diesem Gebiet weltweit in Forschung und Lehre führend sein zu können“, sagt Carina Brunnhofer, Studentin am IAP.

„In den nächsten zehn Jahren werden wir auf Basis der methodischen Entwicklungen und dem fundamentalen Verständnis der Oberflächenchemie und -physik stabile und kommerziell tragfähige Systeme zur Wasserspaltung und CO2-Reduktion entwickeln“, sagt Dominik Dworschak, der Erstautor der gerade erschienenen Studie. „Mindestens eine nachhaltige Verdopplung der derzeitigen Stromleistung muss parallel aber auch erreicht werden“, merkt Markus Valtiner an. „Wir befinden uns also auf einem spannenden Weg, auf dem wir nur durch konsequente, branchenübergreifende Forschung und Entwicklung unsere Klimaziele erreichen werden.“

Fakten, Hintergründe, Dossiers

Mehr über TU Wien

  • News

    Drei Augen sehen mehr als zwei - katalytische Reaktion mit drei verschiedenen Mikroskopen unter exakt gleichen Bedingungen in Echtzeit verfolgt

    Man muss sehr genau hinsehen, um exakt zu verstehen, welche Prozesse an den Oberflächen von Katalysatoren ablaufen. Bei festen Katalysatoren handelt es sich oft um fein strukturierte Materialien aus winzigen Kristallen. Es gibt verschiedene Arten der Mikroskopie, mit denen man die chemische ... mehr

    Chemielabor auf einem Chip analysiert Flüssigkeiten in Echtzeit

    An der TU Wien wurde ein Infrarot-Sensor entwickelt, der in Sekundenbruchteilen Inhaltsstoffe von Flüssigkeiten detektiert. Was machen die Moleküle gerade im Reagenzglas? In der chemischen Technologie ist es oft wichtig, exakt zu messen, wie sich die Konzentration bestimmter Substanzen verä ... mehr

    Ein Molekül aus Licht und Materie

    Ein ganz besonderer Bindungszustand zwischen Atomen konnte nun erstmals im Labor erzeugt werden: Mit einem Laserstrahl lassen sich Atome polarisieren, sodass sie auf einer Seite positiv, auf der anderen Seite negativ geladen sind. Dadurch ziehen sie einander an und bilden einen ganz speziel ... mehr

  • q&more Artikel

    Wirkstoffsuche im Genom von Pilzen

    In Pilzen schlummert ein riesiges Potenzial für neue Wirkstoffe und wertvolle Substanzen, wie etwa Antibiotika, Pigmente und Rohstoffe für biologische Kunststoffe. Herkömmliche Methoden zur Entdeckung dieser Verbindungen stoßen zurzeit leider an ihre Grenzen. Neueste Entwicklungen auf den G ... mehr

    Organs-on-a-Chip

    Ziel der personalisierten Medizin oder Präzisionsmedizin ist es, den Patienten über die funktionale Krankheitsdiagnose hinaus unter bestmöglicher Einbeziehung individueller Gegebenheiten zu behandeln. Organ-on-a-Chip-Technologien gewinnen für die personalisierte Medizin sowie die pharmazeut ... mehr

  • Autoren

    Dr. Christian Derntl

    Christian Derntl, Jahrgang 1983, studierte Mikrobiologie und Immunologie an der Universität Wien mit Abschluss Diplom. Sein Doktoratsstudium im Fach Technische Chemie absolvierte er 2014 mit Auszeichnung an der Technischen Universität Wien. Dabei beschäftigte er sich mit der Regulation von ... mehr

    Sarah Spitz

    Sarah Spitz, Jahrgang 1993, studierte Biotechnologie an der Universität für Bodenkultur in Wien (BOKU) mit Abschluss Diplomingenieur. Während ihres Studiums war sie für zwei Jahre als wissenschaftliche Mitarbeiterin am Department für Biotechnologie (DBT) der BOKU angestellt. Nach einer inte ... mehr

    Prof. Dr. Peter Ertl

    Peter Ertl, Jahrgang 1970, studierte Lebensmittel- und Biotechnologie an der Universität für Bodenkultur, Wien. Im Anschluss promovierte er in Chemie an der University of Waterloo, Ontario, Kanada und verbrachte mehrere Jahre als Postdoc an der University of California, Berkeley, USA. 2003 ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: