q&more
Meine Merkliste
my.chemie.de  
Login  

News

Chemische Evolution: Am Anfang war der Zucker

Chemiker berichtet über einen Reaktionsweg, bei dem sich Zucker an Mineralien ohne Wasser bilden

cocoparisienne, pixabay.com

Unwirtliche Bedingungen, wie sie auf der frühen Erde geherrscht haben können (Symbolbild)

22.10.2020: Der Ursprung allen Lebens liegt in organischen Molekülen. Doch wie sind diese aus anorganischen Stoffen entstanden? Der LMU-Chemiker Oliver Trapp berichtet über einen Reaktionsweg, bei dem sich Zucker an Mineralien ohne Wasser bilden.

Eine Reise zurück in die Vergangenheit: Vor mehr als vier Milliarden Jahren war die Erde alles andere als ein blauer Planet. Sie begann, sich langsam abzukühlen, und die Schale aus verschiedenen mineralischen Schichten bildete sich. Starker Vulkanismus prägte das Bild. Und die Atmosphäre bestand aus Kohlendioxid, Stickstoff, Methan, Ammoniak, Schwefelwasserstoff sowie gasförmigem Wasser. In dieser feindlichen Umgebung nahm alles Leben seinen Anfang, nur welche Schritte waren erforderlich?

Mit dieser Frage befassen sich Forschende seit Jahrzehnten. Bereits 1953 gelang Stanley Miller und Harold C. Urey, zwei US-amerikanischen Chemikern, ein Durchbruch. Im Experiment simulierten sie die Uratmosphäre der Erde inklusive Funkenentladung als Modell für Gewitter. Tatsächlich fanden sie in ihrem Reaktionsansatz neben anderen Stoffen auch Aminosäuren, die Eiweiße aufbauen. Heute weiß man, dass die Reaktionsbedingungen nicht der ursprünglichen Situation entsprachen. Ein Durchbruch war das Miller-Urey-Experiment aber dennoch.

Wie andere wichtige Moleküle, etwa Zucker, Fette oder Nukleinsäuren, entstanden sein könnten, blieb weiterhin offen. Ohne diesen komplexen Baukasten ist eine Evolution, die primär zu Cyanobakterien geführt hat, undenkbar. Mit dieser zentralen Frage befasst sich Oliver Trapp, Professor für Organische Chemie an der LMU.

Zucker aus Formaldehyd

Die Spurensuche beginnt im Jahr 1861. Alexander Butlerow, ein russischer Chemiker, fand heraus, dass aus Formaldehyd bei der sogenannten Formosereaktion unterschiedliche Zucker entstehen. Ameisensäure haben Miller und Urey bei ihren Experimenten nachgewiesen. Bei deren Reduktion entsteht Formaldehyd. Butlerow wiederum fand heraus, dass verschiedene Mineralien die Formosereaktion katalysieren. Dazu gehörten unter anderem Oxide und Hydroxide von Calcium, Barium, Thallium und Blei. Gerade Calcium ist in den oberen Erdschichten reichlich vorhanden.

Doch die Hypothese, dass Zucker über diesen Weg entstanden sein könnten, hat zwei Schönheitsfehler. Bei der Formosereaktion entsteht ein Gemisch von unterschiedlichen Verbindungen. Außerdem läuft dieser Weg nur in wässrigen Systemen ab. Zucker lassen sich jedoch auf Meteoriten ebenfalls nachweisen.

Trapp untersuchte zusammen mit Kollegen der LMU und des Max-Planck-Instituts für Astronomie in Heidelberg eine andere Möglichkeit. Ihre Experimente führten die Forscher unter mechanochemischen Bedingungen durch. Das heißt: Alle Reagenzien und Mineralien kamen in eine Kugelmühle. Ziel der Arbeitsgruppe war, mechanische Kräfte, wie sie in der Erdgeschichte aufgetreten sind, zu simulieren. Das geschah ohne den Zusatz von Lösungsmitteln.

Tatsächlich lief unter diesen Reaktionsbedingungen die Formosereaktion ab. Zahlreiche Mineralien eigneten sich, um den Vorgang zu katalysieren. Sie adsorbierten Formaldehyd. Daraus entstand zusammen mit Glykolaldehyd der Zucker Ribose. Er kommt unter anderem in Ribonukleinsäuren vor, die Erbinformationen von Lebewesen speichern. Aber auch höhere Zucker entstanden im Experiment. Gleichzeitig bildeten sich nur wenige Nebenprodukte wie Milchsäure oder Methanol.

„Unsere Ergebnisse liefern eine plausible Erklärung für die Bildung von Zuckern in der festen Phase, aber auch in einer extraterrestrischen Umgebung, in der kein Wasser zur Verfügung steht“, sagt Trapp. Daraus ergeben sich neue Puzzleteile, die sich langsam in ein umfassendes Bild einfügen und wichtige Wege zur Entstehung von Leben aufzeigen. „Wir sind aber auch überzeugt, dass die gewonnenen Erkenntnisse völlig neue Perspektiven für die Forschung eröffnen werden“, ergänzt der LMU-Chemiker.

Originalveröffentlichung:
Maren Haas, Saskia Lamour, Sarah Babette Christ & Oliver Trapp; "Mineral-mediated carbohydrate synthesis by mechanical forces in a primordial geochemical setting"; Communications Chemistry; 2020

Fakten, Hintergründe, Dossiers

Mehr über LMU

  • News

    Photopharmakologie - Zellen mit Licht kontrollieren

    Sowohl für die Grundlagenforschung als auch für medizinische Anwendungen ist es essenziell, biologische und chemische Prozesse präzise steuern zu können. Lichtimpulse können zeitlich und räumlich sehr genau kontrolliert werden, deswegen ist die Entwicklung lichtsteuerbarer molekularer Werkz ... mehr

    Coronavirus sabotiert Immunabwehr

    Das neue pandemische Coronavirus SARS-CoV-2 hat die menschliche Immunantwort fest im Griff. Wissenschaftler der LMU München und des Universitätsklinikums Ulm haben nun gemeinsam aufgedeckt, wie das Virus durch gezielte Sabotage der zellulären Proteinproduktion das angeborene Immunsystem lah ... mehr

    Wie RNA-Schnipsel die Gefäße schützen

    Winzige Abschnitte aus RNA, einer dem Erbmolekül DNA eng verwandten Nukleinsäure, sind entscheidend an der Genregulation beteiligt und spielen auch bei der Entstehung von Krankheiten, etwa der Atherosklerose, eine wichtige Rolle. Typischerweise agieren diese sogenannten microRNAs (miRNAs) i ... mehr

  • q&more Artikel

    Code erkannt

    Der genetische Code codiert alle Informationen, die in jeder Zelle für die ­korrekte Funktion und Interaktion der Zelle mit der Umgebung notwendig sind. Aufgebaut wird er aus vier unterschiedlichen Molekülen, den so genannten ­kanonischen Watson-Crick-Basen Adenin, Cytosin, Guanin und Thymi ... mehr

  • Autoren

    Prof. Dr. Karsten Spiekermann

    Prof. Dr. med. Karsten Spiekermann Kontakt LMU Klinikum Medizinische Klinik und Poliklinik III Campus GroßhadernMarchioninistr. 1581377 München mehr

    Prof. Dr. Thomas Carell

    Thomas Carell, Jg. 1966, studierte Chemie und fertigte seine Doktorarbeit am Max-Planck Institut für Medizinische Forschung unter der Anleitung von Prof. Dr. Dr. H. A. Staab an. Nach einem Forschungs-aufenthalt in den USA ging er an die ETH Zürich in das Laboratorium für Organische Chemie u ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.