30.09.2020 - Technische Universität München

Gezielte Medikamentenlieferung in die Zelle

Nanopartikel mit synthetischer DNS können Wirkstoffe kontrolliert freisetzen

Arzneimittel haben oft unerwünschte Nebenwirkungen. Ein Grund dafür ist, dass sie nicht nur kranke, sondern auch gesunde Zellen erreichen und auf diese wirken. Forscher der Technischen Universität München (TUM) haben in Zusammenarbeit mit der Königlichen Technischen Hochschule (KTH) in Stockholm eine stabile Nano-Verpackung für Medikamente entwickelt. Durch einen speziellen Mechanismus sollen die Wirkstoffe nur in den erkrankten Zellen freigesetzt werden.

Unser Körper ist aus Milliarden von Zellen aufgebaut. Bei einer Krebserkrankung ist das Genom einiger dieser Zellen krankhaft verändert, sodass diese sich unkontrolliert teilen. Auch bei Virusinfektionen befindet sich die Ursache der Erkrankung in den betroffenen Zellen. Mithilfe von Medikamenten wird etwa während einer Chemotherapie versucht, diese Zellen zu zerstören. Allerdings wirkt die Therapie auf den gesamten Körper, auch gesunde Zellen werden geschädigt, und es kommt zu teils heftigen Nebenwirkungen.  

Ein Forschungsteam um Prof. Oliver Lieleg, Inhaber der Professur für Biomechanik und Mitglied bei der Munich School of BioEngineering der TUM, und um Prof. Thomas Crouzier von der KTH haben ein Transportsystem entwickelt, durch das der Wirkstoff nur innerhalb der betroffenen Zellen freigesetzt werden soll. „Die Wirkstoffträger werden zwar von allen Zellen aufgenommen“, erklärt Lieleg. „Aber die Fähigkeit, den Wirkstoff freizusetzen, sollen nur die erkrankten Zellen besitzen.“

Synthetische DNS hält die Wirkstoffträger geschlossen

Die Wissenschaftler konnten nun zeigen, dass der Mechanismus in Tumor-Modellsystemen aus Zellkulturen funktioniert. Zunächst verpackten sie die Wirkstoffe. Dazu nutzen sie die sogenannten Mucine. Diese sind Hauptbestandteile des Schleims, der zum Beispiel an den Schleimhäuten im Mund, Magen oder Darm gebildet wird. Mucine bestehen aus einem Proteinrückgrat, an das Zuckermoleküle angeheftet sind. „Da Mucine im Körper vorkommen, können geöffnete Mucin-Partikel später von den Zellen abgebaut werden“, sagt Lieleg.

Ein weiterer wichtiger Bestandteil der Verpackung ist ebenfalls im Körper zu finden: die Desoxyribonukleinsäure (DNS), Trägerin unserer Erbinformation. Die Forscher stellten DNS-Strukturen mit von ihnen gewünschten Eigenschaften synthetisch her und hefteten sie chemisch an die Mucine. Wird nun der Lösung, in der sich die Mucin-DNS-Moleküle und der Wirkstoff befinden, Glycerin zugesetzt, sinkt die Löslichkeit der Mucine, sie falten sich zusammen und schließen den Wirkstoff ein. Die DNS-Stränge binden sich aneinander und stabilisieren die Struktur, sodass sie sich nicht mehr von alleine auffalten kann.

Das Schloss zum Schlüssel

Nur der richtige "Schlüssel" kann die DNS-stabilisierten Partikel wieder öffnen, sodass die eingekapselten Wirkstoffmoleküle auch freigesetzt werden. Dabei nutzen die Forscher sogenannte MikroRNS-Moleküle. RNS oder Ribonukleinsäure ist vom Aufbau der DNS sehr ähnlich und spielt eine große Rolle bei der Proteinsynthese im Körper, kann aber auch andere Zellprozesse regulieren.

"In Krebszellen sind MikroRNS-Stränge vorhanden, deren Aufbau uns genau bekannt ist“, erklärt Ceren Kimna, Erstautorin der Studie. “Um sie als Schlüssel zu nutzen, haben wir das Schloss entsprechend angepasst – durch sorgfältiges Design der synthetischen DNS-Stränge, die unsere Medikamententrägerpartikel stabilisieren.“ Die DNS-Stränge sind so aufgebaut, dass die MikroRNS-Moleküle daran binden können und dadurch die vorhandenen Bindungen, die die Struktur stabilisieren, auflösen. Die synthetischen DNS-Stränge in den Partikeln können auch an Mikro-RNS-Strukturen angepasst werden, die bei anderen Krankheiten wie Diabetes oder Hepatitis auftreten.

Noch ist die klinische Anwendung des neuen Mechanismus nicht erprobt; vorher sind erst weitere Untersuchungen im Labor mit komplexeren Tumor-Modellsystemen erforderlich. Auch wollen die Forscher weitere Modifikationen dieses Mechanismus zur Wirkstofffreisetzung untersuchen, um die bestehenden Krebstherapien zu verbessern.

Fakten, Hintergründe, Dossiers

  • Medikamentenfreisetzung
  • Wirkstofffreisetzung
  • Wirkstoffträger

Mehr über TUM

  • News

    Erster elektrischer Nanomotor aus DNA-Material

    Einem Forschungsteam unter Leitung der Technischen Universität München (TUM) ist es erstmals gelungen, einen molekularen Elektromotor mit der Methode des DNA-Origami herzustellen. Die winzige Maschine aus Erbgut-Material setzt sich selbst zusammen und wandelt elektrische Energie in Bewegung ... mehr

    Charakterisierung des Proteoms der Maus

    Proteine kontrollieren und organisieren fast jeden Aspekt des Lebens. Die Gesamtheit aller Proteine in einem Lebewesen, einem Gewebe oder einer Zelle ist das Proteom. Mittels Massenspektrometrie charakterisieren Forschende an der Technischen Universität München (TUM) das Proteom, also das E ... mehr

    Mini-Brennstoffzelle erzeugt Strom mit körpereigenem Zucker

    Traubenzucker, auch Glukose genannt, ist der wichtigste Energielieferant in unseren Körper. Wissenschaftlerinnen und Wissenschaftler der Technischen Universität München (TUM) und des Massachusetts Institute of Technology (MIT) wollen den Zucker im Körper nun auch als Energiequelle für mediz ... mehr

  • q&more Artikel

    Vitalkleber, ein Protein mit Potenzial

    In fast jedem der 17 Ziele der Agenda 2030 für eine nachhaltige Entwicklung spielen Lebensmittel und deren Wertschöpfungskette eine wichtige Rolle [1]. Mit der Agenda haben die Vereinten Nationen einen globalen Handlungsrahmen geschaffen, der sich an alle gesellschaftlichen Akteure richtet. mehr

    Biobasierte Rohstoffströme der Zukunft

    Der anthropogene Klimawandel und die steigende Weltbevölkerung im Verbund mit zunehmender Urbanisierung induzieren globale Herausforderungen an unsere Gesellschaft, die nur durch technologische Fortschritte gelöst werden können. mehr

    Ein Geschmacks- und Aromaschub im Mund

    Der Ernährungstrend hin zu gesünderen Snacks ist ungebremst. Snacks aus gefriergetrockneten Früchten erfüllen die Erwartungen der Verbraucher an moderne, hochwertige Lebensmittel. Allerdings erfordert die Gefriertrocknung ganzer Früchte lange Trocknungszeiten ... mehr

  • Autoren

    Prof. Dr. Thomas Becker

    Thomas Becker, Jahrgang 1965, studierte Technologie und Biotechnologie der Lebensmittel an der Technischen Universität München (TUM). Im Anschluss arbeitete er von 1992 bis 1993 als Projektingenieur in der Fa. Geo-Konzept. Die Promotion erfolgte 1995 an der TUM. Von 1996 bis 2004 war er als ... mehr

    Monika C. Wehrli

    Monika Wehrli, Jahrgang 1994, schloss ihr Studium mit Schwerpunkt Lebensmittelverfahrenstechnik an der ETH Zürich ab. Seit 2018 forscht sie an der Technischen Universität München am Lehrstuhl für Brau- und Getränketechnologie, wo sie ihre Promotion im Bereich Getreidetechnologie und -verfah ... mehr

    Prof. Dr. Thomas Brück

    Thomas Brück, Jahrgang 1972, absolvierte sein Bachelorstudium (B.Sc.) 1996 in den Fächern Chemie, Biochemie und Management an der Keele University in Stoke on Trent, U.K. Er hält einen Masterabschluss (1997) in Molekularmedizin von derselben Universität und promovierte 2002 auf dem Gebiet d ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: