q&more
Meine Merkliste
my.chemie.de  
Login  

News

Allergische Immunantworten helfen bei der Abwehr bakterieller Infektionen

Spannende Entdeckung könnte auch erklären, warum der Körper im Laufe der Evolution am „Allergiemodul“ festgehalten hat

Bobby R. Malhotra CeMM

Künstlerische 3D Darstellung einer Mastzelle mit IgE Antikörpern und Staphylococcus aureus Bakterien

11.09.2020: Eine gemeinsame Studie des CeMM Forschungszentrums für Molekulare Medizin der Österreichischen Akademie der Wissenschaften, der Medizinischen Universität Wien und der Stanford University School of Medicine könnte miterklären, warum der Körper im Laufe der Evolution an einem bekannten „Allergiemodul“ festgehalten hat: Der betreffende Baustein des Immunsystems, bestehend aus Mastzellen und Immunglobolin E (IgE) Antikörpern, kann die Widerstandskraft des Körpers gegen sekundäre bakterielle Infektion erhöhen. Die Studie leistet einen wichtigen Beitrag zum allgemeinen Verständnis des Immunsystems und wurden im Fachjournal Immunity veröffentlicht.

Rund 150 Millionen Europäer leiden unter wiederkehrenden Allergien. Laut einer Studie der europäischen Akademie für Allergologie und klinische Immunologie könnte bis 2025 jeder zweite Europäer von einer Allergie betroffen sein. Allergische Patienten durchlaufen zu Beginn der Erkrankung einen Prozess der "Sensibilisierung“. Dabei entwickelt ihr Immunsystem IgE-Antikörper, die körperfremde Stoffe, sogenannte Allergene erkennen. Die IgE Antikörper wiederum binden an Zellen mit einem FcεR1 Rezeptor, der vor allem auf Mastzellen, einer Art Immunzelle vorkommt, die in den meisten Geweben des Körpers vorhanden sind.

Bei erneutem Kontakt mit einem Allergen vermitteln die IgE-Antikörper die sofortige Aktivierung der Mastzellen und die unmittelbare Freisetzung verschiedener Mediatoren, z.B. Histamin, Proteasen oder verschiedene Zytokine, welche die klassischen allergischen Symptomen hervorrufen. Abhängig vom Organ, in dem es zum Kontakt mit dem Allergen kommt, können die Symptome von Niesen/Atemnot (Atemwege) über Durchfall und Magenschmerzen (Magen-Darm-Trakt) bis hin zu Juckreiz (Haut) reichen. Systemischer Kontakt mit Allergenen, zum Beispiel durch Erreichen des Blutkreislaufs, kann zur gleichzeitigen Aktivierung einer großen Anzahl von Mastzellen in verschiedenen Organen führen, was eine Anaphylaxie – eine schwerwiegende, lebensbedrohliche allergische Reaktion – hervorrufen kann.

Trotz langjähriger Forschung an IgE-Antikörpern und Mastzellen konnte die biologische Funktion dieses „Allergiemoduls“ bis heute noch nicht vollständig geklärt werden. Bereits 1991 postulierte Margie Profet in ihrer „Toxin-Hypothese“ eine positive Funktion allergischer Reaktionen bei der Abwehr von Giftstoffen. Frühere Studien von Stephen J. Galli, Senior Co-Autor der aktuellen Publikation an der Stanford University haben diese These untermauert und die Bedeutung von Mastzellen für die angeborene Resistenz gegen das Gift bestimmter Schlangen und der Honigbiene beschrieben, bzw. unter Mitwirkung von Erstautor Philipp Starkl, deren Relevanz im Zusammenspiel mit IgE-Antikörpern für die erworbene Immunabwehr gegen große Giftmengen aufgezeigt.

Auf Basis dieser Erkenntnisse untersuchten Philipp Starkl, Senior Postdoc an der Meduni Wien und CeMM, zusammen mit Sylvia Knapp, Professorin an der MedUni Wien und CeMM PI, sowie Stephen J. Galli, Professor an der Stanford University School of Medicine, und Kollegen in der aktuellen Studie, ob Mastzellen und IgE-Antikörper auch bei der Abwehr anderer toxinproduzierender Organismen, insbesondere pathogener Bakterien, relevant sein könnten. Wegen seiner enormen klinischen Relevanz und seines breiten Repertoires an Toxinen wählten die Autoren das Bakterium Staphylococcus aureus als Erregermodell. Staphylococcus aureus ist ein typischer antibiotikaresistenter Krankheitserreger und wird auch mit der Entwicklung allergischer Erkrankungen wie Asthma und atopische Dermatitis in Verbindung gebracht. Für ihre Forschung verwendeten die Wissenschaftler verschiedene S. aureus-Mausinfektionsmodelle in Kombination mit genetischen Ansätzen und In-vitro-Mastzellmodellen, um die Funktionen ausgewählter Komponenten der IgE-Effektormechanismen zu entschlüsseln.

Die Wissenschaftler fanden heraus, dass Mäuse mit einer milden S. aureus-Hautinfektion im Verlauf der folgenden adaptiven Immunantwort spezifische IgE-Antikörper gegen bakterielle Komponenten entwickeln. Diese Immunantwort verleiht den Mäusen erhöhte Resistenz gegenüber schweren sekundären Lungen- oder Haut- und Gewebeinfektionen. In diesem Modell sind Mäuse, denen funktionelle IgE-Effektormechanismen oder Mastzellen fehlen, nicht in der Lage einen solchen Schutz aufzubauen. Diese Erkenntnisse deuten darauf hin, dass die „allergische“ Immunantwort nicht ausschließlich pathologisch, sondern schützend bei bakteriellen Infektionen sein kann. Die Abwehr von toxinproduzierenden pathogenen Bakterien könnte daher eine wichtige biologische Funktion des "Allergiemoduls" sein.

Diese Studie stellt eine wichtige Kooperation dar, die von Philipp Starkl im Labor von Stephen J. Galli an der Stanford University zusammen mit anderen Kollegen initiiert und danach im Labor von Sylvia Knapp an der Medizinischen Universität Wien und am CeMM fortgesetzt wurde. Die spannende Entdeckung trägt nicht nur zum besseren allgemeinen Verständnis des Immunsystems und vor allem allergischer Immunreaktionen bei, sondern könnte auch miterklären, warum der Körper im Laufe der Evolution am „Allergiemodul“ festgehalten hat. Denn trotz ihrer gefährlichen Rolle bei allergischen Erkrankungen können IgE-Antikörper und Mastzellen positive Funktionen ausüben, die mithelfen, den Körper gegen Gifte und Infektionen durch toxinproduzierende Bakterien wie S. aureus zu schützen.

Originalveröffentlichung:
"IgE Effector Mechanisms, in Concert with Mast Cells, Contribute to Acquired Host Defense against Staphylococcus aureus"; Immunity; 2020

Fakten, Hintergründe, Dossiers

  • Immunsystem
  • Allergien
  • Mastzellen
  • Bakterien
  • Staphylococcus aureus

Mehr über CeMM

  • News

    Neue Einzelzell-RNA-Seq zur präzisen Charakterisierung von zellspezifischer Arzneimittelwirkungen in Pankreas-Zellen

    Forscher der Gruppen um Stefan Kubicek und Christoph Bock am CeMM in Wien haben eine Methode entwickelt, mit der sich die Wirkung von chemischen Substanzen in isoliertem Pankreasgewebe durch den Einsatz einer verfeinerten Einzelzell-RNA-Sequenzierungsmethode präzise beurteilen lässt. Ihre i ... mehr

    Wie Viren chronisch werden

    Chronische Virusinfektionen wie HIV oder Hepatitis gehören weltweit zu den größten Bedrohungen für die menschliche Gesundheit. Während nach überstandenen akuten Viruserkrankungen meist eine vollständige Genesung und Immunisierung eintritt, gelingt es chronischen Viren das Immunsystem zu umg ... mehr

    Pharmacoscopy: Mikroskopie der nächsten Generation

    Eine neue Mikroskopie-Methode ermöglicht bisher unerreichte Einblicke in die Interaktionen zwischen einzelnen Zellen des Immunsystems: Das „Pharmacoscopy“ getaufte und patentierte Verfahren, entwickelt von Wissenschaftlern am CeMM Forschungszentrum für Molekulare Medizin der Österreichische ... mehr

Mehr über Medizinische Uni Wien

  • News

    Medikamenten-Entwicklung mit Peptiden aus der Natur

    Eine wissenschaftliche Arbeitsgruppe am Institut für Pharmakologie der Medizinischen Universität Wien konnte in Kooperation mit der Universität Wien und Forschern aus Australien in einer aktuellen Studie zeigen, dass ein aus einer Milbe gewonnenes Peptidhormon am menschlichen Vasopressin-2- ... mehr

    Fettreiche Ernährung der Mutter schadet Gehirn von Ungeborenen

    Ein Studienteam am Zentrum für Hirnforschung der MedUni Wien hat gezeigt, dass fettreiche Ernährung der Mutter im Gehirn von Ungeborenen lebenslange Modifikationen induziert. Mütterliche Organismen produzieren bei gesteigerter Aufnahme von ungesättigten Fettsäuren ein Übermaß an körpereigen ... mehr

    Die Lunge vergisst nie

    Laut einer neuen Studie der Medizinischen Universität Wien sind spezielle T-Lymphozyten, Gedächtniszellen in der Lunge, die auf eingeatmete Allergene reagieren, die Ursache für Anfälle von allergischem Asthma. Diese speziellen Th2-Helferzellen, die ein Leben lang als Gedächtniszellen im Gew ... mehr

Mehr über Stanford University

  • News

    Proteinkomplex verhindert toxische Aggregation von Proteinen

    Ein Proteinkomplex in der Zelle trägt entscheidend dazu bei, Toxizität bei Proteinen zu verhindern, die sich in amyloiden Plaques ansammeln. Dies kann zu neurodegenerativen Erkrankungen wie Alzheimer und Chorea Huntington führen. Wissenschaftler der Universitäten Konstanz (Deutschland), Lee ... mehr

    Effiziente elektrochemische Zellen für die CO2-Konversion

    Wissenschaftler der Stanford University haben elektrochemische Zellen entwickelt, die aus CO2 gewonnenes Kohlenmonoxid (CO) effektiver und effizienter als bestehende Technologien in kommerziell verwertbare Verbindungen umwandeln. Ihre Forschung liefert eine neue Strategie zur Abtrennung von ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.