10.09.2020 - Institut Català d'Investigació Química (ICIQ)

Kaskaden mit Kohlenstoffdioxid

Neuartiger katalytischer Ansatz zur Umwandlung von CO2 in wertvolle chemische Zwischenprodukte in Form zyklischer Carbonate

Kohlenstoffdioxid (CO2) ist nicht nur ein unerwünschtes Treibhausgas, sondern auch eine interessante Rohstoffquelle, deren Recycling wertvoll und nachhaltig sein könnte. Ein spanisches Forschungsteam stellt in der Zeitschrift Angewandte Chemie einen neuartigen katalytischen Ansatz zur Umwandlung von CO2 in wertvolle chemische Zwischenprodukte in Form zyklischer Carbonate vor.

CO2 zur Reaktion zu bringen ist leider alles andere als einfach. Momentan steht hier vor allem die Umsetzung von CO2 in Methanol im Fokus, welches als alternativer Treibstoff, aber auch als Rohstoff für die chemische Industrie dienen kann. Mittels innovativer katalytischer Verfahren könnte CO2 auch ohne den Umweg über Methanol in hochwertige chemische Verbindungen überführt werden, etwa zur Produktion von bioabbaubaren Kunststoffen oder pharmazeutischen Zwischenprodukten.

Ein vielversprechender Ansatzpunkt ist die Umsetzung von CO2 zu organischen Carbonaten, das heißt Verbindungen, die eine von der Kohlensäure abgeleitete Baugruppe enthalten: ein Kohlenstoffatom, an das drei Sauerstoffatome gebunden sind. Die Forscher des Barcelona Institute of Science and Technology, des Institute of Chemical Research of Catalonia (Tarragona) sowie des Catalan Institute of Research and Advanced Studies (Barcelona) um Arjan W. Kleij haben einen konzeptionell neuen Ansatz entwickelt, um Carbonate in Form sechsgliedriger Ringe ausgehend von CO2 und einfachen, leicht zugänglichen Bausteinen zu synthetisieren. Solche zyklischen Carbonate haben großes Potenzial für die Herstellung neuer CO2-basierter Polycarbonate.

Ausgangspunkt sind Verbindungen mit einer Kohlenstoff-Kohlenstoff-Doppelbindung und einer Alkoholgruppe (–OH) am übernächsten Kohlenstoffatom (homoallylische Alkohole). Im ersten Reaktionsschritt wird die Doppelbindung in ein Epoxid überführt, d.h. einen Dreiring aus zwei Kohlenstoff- und einem Sauerstoffatom. Das Epoxid ist in der Lage mittels eines spezifischen Katalysators mit CO2 zu reagieren. Ergebnis ist ein zyklisches Carbonat in Form eines Fünfrings aus drei Kohlenstoff- und zwei Sauerstoffatomen. Der Kohlenstoff an der „Spitze“ des Fünfrings trägt ein zusätzliches Sauerstoffatom. Im nächsten Schritt aktiviert ein organischer Katalysator (N-heterozyklische Base) die OH-Gruppe und sorgt so dafür, dass sich der Fünf- zu einem Sechsring umlagert. Das Sauerstoffatom der OH-Gruppe wird dabei in den neuen Ring integriert, während der ursprüngliche Fünfring-Sauerstoffatom eine neue OH-Gruppe bildet. Aber auch die Rückreaktion findet statt. Da der Fünfring energetisch wesentlich günstiger ist, liegt im Gleichgewicht nur eine verschwindend kleine Menge der Sechsring-Form vor. Der Trick: Der Sechsring wird abgefangen, indem die neue OH-Gruppe an ein Reagenz bindet (Acylierung), die dank ihrer anderen Position deutlich reaktiver als die ursprüngliche OH-Gruppe ist.

Das neu entwickelte Protokoll eröffnet eine breite Palette neuartiger Carbonat-Sechsringe in ausgezeichneten Ausbeuten und hoher Selektivität unter besonders milden Reaktionsbedingungen und erweitert so das Repertoire CO2-basierter Heterozyklen und Polymere, die auf herkömmlichen Wegen nur schwer herzustellen sind.

Fakten, Hintergründe, Dossiers

  • Carbonate
  • Polycarbonate

Mehr über Angewandte Chemie

  • News

    Langes, intensives Nachleuchten

    Ein Forschungsteam aus Litauen hat organische Farbstoffe entwickelt, die unter Lichtanregung besonders lang und intensiv nachleuchten. Möglich ist das intensive Nachleuchten in den Farben rot oder grün-blau durch eine Kombination aus einer thermisch aktivierten verzögerten Fluoreszenz mit a ... mehr

    Urtümliche Reaktionswege

    Natürlich ablaufende chemische Reaktionen könnten sich zu den heute bekannten biochemischen Prozessen fortentwickelt haben. Ein Forschungsteam hat nun entdeckt, dass eine Reaktionsabfolge im sogenannten reduktiven Krebszyklus, einem fundamentalen biochemischen Prozess, auch ohne Enzymkataly ... mehr

    Nanokriställchen mit Lichtenergie-Speicher beflügeln chemische Reaktionen

    Was Pflanzen mit ihrer Photosynthese können, hält auch vermehrt Einzug in die Chemie: chemische Reaktionen, die „freiwillig“ nicht oder schlecht laufen, mit Lichtenergie anzutreiben. Dazu braucht man geeignete Photokatalysatoren, die Lichtenergie einfangen und der Reaktion zur Verfügung ste ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: