q&more
Meine Merkliste
my.chemie.de  
Login  

News

Tumore finden und dabei gleich angreifen

Therapie und Diagnostik von Tumoren in nur einem Schritt ermöglichen sogenannte Theranostika

© RUB, Marquard

Isabelle Daubit (vorn) und Nils Metzler-Nolte arbeiten in internationaler Kooperation.

04.09.2020: Die Kombination aus einem Biomolekül und einem Metallkomplex kann Krebszellen gezielt aufsuchen, binden, markieren und schädigen. Ein solches sogenanntes Theranostikum, das Tumorzellen durch die Bestrahlung mit sichtbarem Licht erkennbar macht, konnte ein deutsch-spanisches Team herstellen und seine Wirksamkeit gegen Lungenkrebszellen belegen. Einen Teil der Arbeiten führte Andres Luengo aus der Arbeitsgruppe von Prof. Dr. M. Concepción Gimeno der Universität Zaragoza (Spanien) in einem Forschungsaufenthalt in der Arbeitsgruppe von Prof. Dr. Nils Metzler-Nolte an der Ruhr-Universität Bochum (RUB) durch.

Sichtbar machen und behandeln in einem Schritt

Theranostik, die Kombination aus „Therapie“ und „Diagnostik“, bezieht sich auf Medikamente, die nicht nur zur Behandlung, sondern auch zur Sichtbarmachung von Tumoren genutzt werden können. Das Prinzip ist so simpel wie genial: Geht es zum Beispiel um die Behandlung von Prostatakrebs, wird ein prostataspezifischer Antikörper radioaktiv markiert. Nachdem der Antikörper die Prostatakrebszellen gebunden hat, wird die vom Theranostikum ausgehende Radioaktivität nicht nur für die Sichtbarmachung des Tumors und möglicher Metastasen genutzt, sondern wirkt zusätzlich direkt am Zielort schädigend auf die Krebszellen.

Andres Luengo konnte bei seinem Forschungsaufenthalt an der RUB die Erfahrung der Arbeitsgruppe Bioanorganische Chemie auf dem Gebiet der Herstellung kleiner Biomoleküle und toxisch auf Krebszellen wirkender Metallbausteine nutzen: Er kombinierte ein kleines Biomolekül namens Enkephalin, welches an Opioidrezeptoren andocken kann, die in einigen Krebsarten vermehrt vorkommen, mit einem leuchtenden und einem toxischen Metallbaustein. So gelang ihm die Herstellung eines Moleküls, welches die Eigenschaften moderner Theranostika besitzt, jedoch nicht mit Radioaktivität, sondern durch die Bestrahlung mit sichtbarem Licht nachgewiesen werden kann.

Vielversprechendes neues System

Die Forscher der Gimeno-Gruppe konnten nicht nur die leuchtenden Eigenschaften des Moleküls für dessen Nachweis innerhalb der Zellen nutzen, sondern außerdem seine toxische Wirkung zeigen und so den Weg für die weitere Erforschung dieses vielversprechenden und innovativen theranostischen Systems ebnen. 

Bei der Untersuchung der neuen Verbindung stellen die Forscher fest, dass nur eine von drei leicht verschiedenen Verbindungen tatsächlich aktiv gegen Krebszellen wirkte. Zudem stellte sich heraus, dass die Verbindung in den Krebszellen einen unerwarteten Ort aufsuchte, an dem das Team ihre Lokalisation nicht erwartet hatte. Die schädigende Wirkung auf die Tumorzellen war abhängig von der Stabilität der Bindung zwischen dem Biomolekül, einem Peptid, und dem zellschädigenden Metallkomplex: Nur, wenn sie weniger stabil ist und somit aufbrechen kann, kann der zellschädliche Komplex seine zelluläre Zielstruktur erreichen und die Zellen angreifen.

Originalveröffentlichung:
Andrés Luengo, Isabel Marzo, Matthew Reback, Isabelle M. Daubit, Vanesa Fernández-Moreira, Nils Metzler-Nolte, M. Concepción Gimeno; "Luminescent bimetallic Ir(III)/Au(I) peptide bioconjugates as potential theranostic agents"; Chemistry – A European Journal; 2020

Fakten, Hintergründe, Dossiers

  • Theranostika
  • Krebs
  • Lungenkrebs
  • Krebsdiagnostik
  • Krebstherapien

Mehr über Ruhr-Universität Bochum

  • News

    Metallorganische Netzwerke werden flexibel

    Materialien aus anorganischen und organischen Komponenten können das Beste aus zwei Welten vereinen: Unter bestimmten Umständen sind dreidimensionale Netzwerke aus metallorganischen Verbindungen, die sogenannten Metal-Organic Frameworks, kurz MOFs, so geordnet aufgebaut wie Kristalle und zu ... mehr

    Neue Art von Teamwork in Wasserstoff produzierendem Enzym entdeckt

    Der Transport von Protonen und der Transport von Elektronen in Hydrogenase-Enzymen wurden bislang getrennt voneinander betrachtet. Dabei ist die Kopplung der Schlüssel zum Erfolg. Hydrogenasen können Wasserstoff genauso effizient umsetzen wie teure Platinkatalysatoren. Um sie für biotechnol ... mehr

    Programmierbare synthetische Materialien

    In der DNA ist die Information in der Abfolge chemischer Bausteine gespeichert, in Computern bestehen Information aus Sequenzen von Nullen und Einsen. Dieses Konzept wollen Forscher auf künstliche Moleküle übertragen. Künstliche Moleküle könnten eines Tages die Informationseinheit einer neu ... mehr

  • q&more Artikel

    Maßgeschneiderte Liganden eröffnen neue Reaktionswege

    Zum ersten Mal konnte ein effizienter Katalysator für die palladiumkatalysierten C–C-Bindungs-knüpfungen zwischen Arylchloriden und Alkyllithium-Verbindungen gefunden werden. Diese Reaktion ermöglicht einfachere Synthesewege für wichtige Produkte. mehr

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Henning Steinert

    Henning Steinert, Jahrgang 1993, studierte an der Carl‑von‑Ossietzky Universität Oldenburg Chemie, wo er sich unter anderem mit der Aktivierung von Si–H-Bindungen an Titankomplexen beschäftigte. Aktuell promoviert er an der Ruhr-Universität Bochum am Lehrstuhl für Anorganische Chemie II von ... mehr

    Prof. Dr. Viktoria Däschlein-Gessner

    Viktoria Däschlein-Gessner, Jahrgang 1982, studierte Chemie an den Universitäten Marburg und Würzburg und promovierte im Jahr 2009 an der TU Dortmund. Nach einem Postdoc-Aufenthalt an der University of California in Berkeley (USA) leitete sie eine Emmy-Noether-Nachwuchsgruppe an der Univers ... mehr

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.