q&more
Meine Merkliste
my.chemie.de  
Login  

News

Wie sich Bakterien an Fasern im Darm festhalten

Zwei verschiedene Bindungen – je nach Strömungsverhältnissen

University of Basel, Department of Chemistry

Darmbakterium, das durch Adhäsionsproteine auf der Oberfläche der Bakterien an Zellulosefasern gebunden ist. Cohesin (gelb) und Dockerin (grün) verbinden sich zu einem Proteinkomplex, der einen dualen Bindungsmodus aufweist.

01.09.2020: Forscher haben den molekularen Mechanismus aufgeklärt, mit dem sich Bakterien an Zellulosefasern im Darm anheften. Indem sie auf zwei verschiedene Arten an die Fasern binden, können sie den Scherkräften im menschlichen Körper standhalten. Das Forschungsteam der Universität Basel und der ETH Zürich hat seine Ergebnisse in der Zeitschrift «Nature Communications» veröffentlicht.

Zellulose ist ein Hauptbestandteil pflanzlicher Zellwände. Sie besteht aus Molekülen, die zu festen Fasern verbunden sind. Für den Menschen ist Zellulose unverdaulich, und auch der Mehrheit der Darmbakterien fehlen die Enzyme, die für den Abbau erforderlich sind.

Kürzlich wurde jedoch genetisches Material des zelluloseabbauenden Bakteriums R. champanellensis in menschlichen Darmproben nachgewiesen. Die bakterielle Besiedlung des Darms ist von grundlegender Bedeutung für die menschliche Physiologie, und die Kenntnis, wie sich Darmbakterien an Zellulose anheften können, erweitert unser Verständnis des Mikrobioms und seiner Bedeutung für die menschliche Gesundheit.

Um sich an Zellulosefasern zu heften und diese abzubauen, verwendet das untersuchte Bakterium ein kompliziertes Netzwerk von Gerüstproteinen und Enzymen an der äusseren Zellwand, das als Cellulosom bezeichnet wird. Die Cellulosome werden durch wechselwirkende Proteine bestimmter Familien zusammengehalten.

Von besonderem Interesse ist die Cohesin-Dockerin-Wechselwirkung, die für die Verankerung der Cellulosome an der Zellwand sorgt. Sie muss den Scherkräften im Körper standhalten, damit das Bakterium an den Fasern haften bleibt. Es war diese für das Bakterium lebenswichtige Eigenschaft, welche die Forscher motiviert hat zu untersuchen, wie genau die Verankerung auf mechanische Kräfte reagiert.

Das Team um Prof. Dr. Michael Nash von der Universität Basel und der ETH Zürich sowie Forscher der LMU München und der Auburn University verwendeten eine Kombination aus Einzelmolekül-Rasterkraftmikroskopie, Einzelmolekül-Fluoreszenz und Molekulardynamik-Simulationen, um zu klären, wie der Proteinkomplex den äusseren Kräften widersteht.

Zwei verschiedene Bindungen – je nach Strömungsverhältnissen

Die Forscher beobachteten, dass der Proteinkomplex ein seltenes Verhalten zeigt, das als dualer Bindungsmodus bezeichnet wird. Dabei bilden die Proteine auf zwei verschiedene Arten einen Komplex. Weitere Analysen zeigten, dass die beiden Bindungsmodi sehr unterschiedliche mechanische Eigenschaften aufweisen, wobei der eine bei geringen Kräften von etwa 200 Pikonewton bricht und der andere eine viel höhere Stabilität aufweist und bis zu einer Kraft von 600 Pikonewton standhält.

Zudem wiesen sie am Proteinkomplex einen sogenannten «catch bond» nach – eine Bindung, die nicht schwächer, sondern stärker wird, wenn schnell an den Proteinen gezogen wird. Die Forscher vermuten, dass diese Dynamik es den Bakterien ermöglicht, einerseits stabil an Zellulose zu haften und andererseits den Komplex als Reaktion auf neue Substrate oder zur Erkundung einer neuen Umgebung freizusetzen.

«Über die biologische Bedeutung der dualen Bindungsmodi können wir nur spekulieren. Wir vermuten, dass die Bakterien die Präferenz des Bindungsmodus kontrollieren können, indem sie die Proteine modifizieren. Dies würde es erlauben, je nach Umgebung von einem niedrigen zu einem hohen Adhäsionszustand zu wechseln», erklärt Prof. Nash.

Die neuen Erkenntnisse zu diesem komplexen natürlichen Adhäsionsmechanismus sind grundlegend für die Entwicklung künstlicher molekularer Mechanismen, die ein ähnliches Verhalten zeigen, aber beispielsweise an krankheitsrelevante Zielmoleküle binden. Solche Materialien könnten zukünftig in biobasierten medizinischen Sekundenklebern zur Anwendung kommen oder dazu beitragen, dass therapeutische Nanopartikel im Körper trotz Scherkräften besser binden. «Vorerst sind wir gespannt darauf, ins Labor zurückzukehren und zu sehen, was haften bleibt», sagt Michael Nash.

Originalveröffentlichung:
Zhaowei Liu, Haipei Liu, Andrés M. Vera, Rafael C. Bernardi, Philip Tinnefeld, Michael A. Nash; "High Force Catch Bond Mechanism of Bacterial Adhesion in the Human Gut"; Nature Communications; 2020

Fakten, Hintergründe, Dossiers

  • Bakterien
  • Darm
  • Darmbakterien

Mehr über Universität Basel

Mehr über ETH Zürich

  • News

    Mechanismus entdeckt, wie das Coronavirus die Zelle kapert

    Forscher der ETH Zürich und der Universität Bern haben einen Mechanismus entdeckt, wie das Coronavirus menschliche Zellen manipuliert, um seine eigene Vermehrung sicherzustellen. Dieses Wissen wird helfen, Medikamente und Impfstoffe gegen das Coronavirus zu entwickeln. Wie ein Pirat, der ei ... mehr

    Elektronenbewegungen in Flüssigkeit mit Superzeitlupe gemessen

    In Molekülen können sich Elektronen bewegen, zum Beispiel wenn sie von aussen angeregt werden oder im Verlauf einer chemischen Reaktion. Erstmals ist es nun Wissenschaftlern gelungen, die ersten paar Dutzend Attosekunden dieser Elektronenbewegung in einer Flüssigkeit zu untersuchen. Um zu ... mehr

    Simulations-Mikroskop prüft Transistoren der Zukunft

    Seit der Entdeckung von Graphen stehen zweidimensionale Materialien im Fokus der Materialforschung. Mit ihnen liessen sich unter anderem winzige, leistungsstarke Transistoren bauen. Forscher der ETH Zürich und der EPF Lausanne haben nun aus 100 möglichen Materialien 13 vielversprechende Kan ... mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.