q&more
Meine Merkliste
my.chemie.de  
Login  

News

Gefangen von Enzymen

Rund vierzig Jahre alte Forschungsfrage gelöst

Charlotte Konrad, MDC

Die langsam fahrenden Schiffe auf offener See sollen die eingeschränkte cAMP-Dynamik veranschaulichen. Die Strudel stehen für cAMP-Nanodomänen um PDEs herum.

Paolo Annibale, MDC

Dargestellt sind Zellen, die eines der Nanoruler exprimieren, mit denen Forscher nanometergroße cAMP-Gradienten in intakten Zellen abbilden können.

28.08.2020: Im Fachblatt „Cell“ erläutert ein Team vom MDC, wie es Zellen gelingt, mit nur einem Botenstoff, dem Molekül cAMP, ganz unterschiedliche Signalwege anzuschalten: Er wird dazu in nanometergroßen Räumen quasi inhaftiert.

Auf der Oberfläche jeder Zelle des menschlichen Körpers sitzen bis zu hundert verschiedene Antennen: Rezeptoren, mit denen die Zelle Signale von außen empfängt und diese dann in ihr Inneres weiterleitet. Solche Signale können zum Beispiel in Form von Sinneswahrnehmungen, Neurotransmittern wie Dopamin oder Hormonen wie Insulin bei der Zelle eintreffen.

Einer der wichtigsten Botenstoffe, mit denen die Zelle solche Reize in ihrem Inneren weiterleitet und dann entsprechende Signalwege anschaltet, ist ein kleines Molekül namens cAMP. Es wurde in den 1950er-Jahren entdeckt. Bislang ging man aufgrund experimenteller Beobachtungen davon aus, dass cAMP in der Zelle frei diffundiert, seine Konzentration also überall in der Zelle annähernd gleich ist – und ein Signal deswegen eigentlich die gesamte Zelle erfassen müsste.

„Seit Anfang der 1980-er Jahre wusste man allerdings, dass zum Beispiel zwei verschiedene Rezeptoren von Herzzellen beim Empfang eines äußeren Signals exakt die gleichen Mengen cAMP freisetzen, dies aber in der Zelle zu ganz unterschiedlichen Effekten führt“, berichtet Dr. Andreas Bock. Gemeinsam mit Dr. Paolo Annibale leitet er kommissarisch die Arbeitsgruppe „Signalprozesse von Rezeptoren“ am Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) in Berlin.

Wie Löcher in einem Schweizer Käse

Diesen scheinbaren Widerspruch, der die Wissenschaft seit nunmehr fast vierzig Jahren beschäftigt, haben Bock und Annibale, die beiden Erstautoren der Studie, aufgelöst. Wie das Team im Fachblatt „Cell“ berichtet, kann sich das meiste cAMP entgegen früherer Annahmen nicht frei in der Zelle bewegen, sondern ist an Proteine gebunden, vor allem an Proteinkinasen. Neben den drei Wissenschaftlern waren an der Arbeit auch Professor Martin Falcke vom MDC und weitere Forschende aus Berlin, Würzburg und Minneapolis beteiligt.

„Durch die Bindung an die Proteine ist die Konzentration an freiem cAMP in der Zelle sehr niedrig“, sagt Professor Martin Lohse, früherer Arbeitsgruppenleiter am MDC und Letztautor der Studie. „Dadurch haben die eher langsamen cAMP-abbauenden Enzyme, die Phosphodiesterasen (PDE), genügend Zeit, um nanometergroße Kompartimente um sich herum zu bilden, die nahezu frei von cAMP sind.“ In diesen winzigen Räumen werde der Botenstoff jeweils separat reguliert. „Das ermöglicht es Zellen, in sehr vielen solcher Räume jeweils unterschiedliche Rezeptorsignale gleichzeitig zu verarbeiten“, erläutert Lohse. Zeigen konnten das die Forscher unter anderem am Beispiel der cAMP-abhängigen Proteinkinase A, für deren Aktivierung in verschiedenen Kompartimenten unterschiedliche cAMP-Mengen erforderlich waren.

„Man kann sich diese leergeräumten Kompartimente wie die Löcher eines Schweizer Käses vorstellen – oder auch wie winzige Gefängnisse, in denen die eigentlich eher langsam arbeitende PDE darüber wacht, dass das viel schnellere cAMP nicht ausbricht und unbeabsichtigte Effekte in der Zelle erzielt“, erklärt Annibale. „Ist der Täter erst eingesperrt, muss die Polizei nicht mehr rennen.“

Mit nanometergroßen Linealen

Erkannt hat das Team die Bewegungen des Botenstoffes in der Zelle mit fluoreszierenden cAMP-Molekülen und speziellen Methoden der Fluoreszenzspektroskopie, unter anderem Fluktuationsspektroskopie und Anisotropie, die Annibale für die Studie weiterentwickelt hat. Sogenannte Nanoruler haben der Gruppe dabei geholfen, die Größe der Löcher, in denen das cAMP jeweils spezifische Signalwege anschaltet, zu vermessen. „Dabei handelt es sich um ausgestreckte Proteine, die wir wie ein winziges Lineal benutzen konnten“, erklärt Bock, der die Nanoruler erfunden hat.

Die Messungen des Teams haben ergeben, dass die meisten Kompartimente tatsächlich kleiner als zehn Nanometer – also zehn millionstel Millimeter – sind. Auf diese Weise gewinnt die Zelle Tausende voneinander getrennter Räume, in denen sie cAMP separat reguliert und dadurch vor unbeabsichtigten Effekten des Botenstoffes geschützt ist. „Wir konnten zeigen, dass ein bestimmter Signalweg in einem nahezu cAMP-freien Loch zunächst unterbrochen war“, berichtet Annibale. „Doch wenn wir die PDE, die diese Löcher schafft, gehemmt haben, lief der Signalweg weiter.“

Kein Schalter, sondern ein Chip

„Die Zelle agiert folglich nicht wie ein einzelner An/Aus-Schalter, sondern eher wie ein ganzer Chip, der Tausende solcher Schalter enthält“, fasst Martin Lohse die Erkenntnisse der Arbeit zusammen. „Es war ein Fehler in der Vergangenheit, dass bei solchen Experimenten mit viel zu hohen cAMP-Konzentrationen gearbeitet wurde – sodass tatsächlich große Mengen des Botenstoffes in der Zelle frei diffundierten, weil alle Bindungsplätze belegt waren.“

Als nächstes wollen die Forscher nun die Architektur der cAMP-Gefängnisse weiter untersuchen und herausfinden, welche PDE jeweils welche Signalproteine schützen. Künftig könnte auch die medizinische Forschung von ihren Erkenntnissen profitieren. „Viele Medikamente verändern Signalwege innerhalb der Zelle“, sagt Lohse. „Durch die von uns entdeckte Kompartimentierung der Zelle wissen wir nun, dass es sehr, sehr viele mögliche Angriffspunkte gibt, nach denen man jetzt suchen kann.“

„Eine zeitgleich mit unserer Publikation veröffentlichte Studie in ‚Cell’ aus San Diego zeigt zudem, dass Zellen zu wuchern beginnen, wenn ihre einzelnen Signalwege nicht mehr räumlich voneinander getrennt reguliert werden“, ergänzt Bock. Darüber hinaus wisse man, dass beispielsweise bei Herzinsuffizienz die Verteilung der cAMP-Konzentration in den Herzzellen verändert sei. Somit liefere ihre Arbeit sowohl der Krebs- als auch der Herz-Kreislauf-Forschung neue Grundlagen.

Originalveröffentlichung:
Bock, Andreas & Annibale, Paolo et al.; "Optical mapping of cAMP signaling at the nanometer scale"; Cell; 2020

Fakten, Hintergründe, Dossiers

  • Phosphodiesterasen
  • Enzyme
  • Proteinkinasen
  • Signalwege
  • Signalproteine

Mehr über MDC

  • News

    Die Eintrittspforten für SARS-CoV-2

    Anhand von Daten aus dem Human Cell Atlas haben Forscher bei Becherzellen und Flimmerepithel in der Nase besonders viele der Proteine entdeckt, die SARS-CoV-2 nutzt, um in unsere Zellen zu gelangen. Dass Forscher des Wellcome Sanger Institutes, des Universitätsklinikums Groningen, der Unive ... mehr

    Nierenkrebs an der Wurzel packen

    Forscher am MDC haben die Stammzellen entdeckt, die für die häufigste Art Nierenkrebs verantwortlich sind. Das Team von Walter Birchmeier hat zudem einen Weg gefunden, das Wachstum dieser Tumore in drei Modellen der Erkrankung zu blockieren. Krebszellen sind nicht alle gleich. Tumore enthal ... mehr

    Titin in Echtzeit verfolgen

    Den gesamten Lebenszyklus des größten Proteins im Körper, Titin, haben nun MDC-Forscher mithilfe hochauflösender bildgebender Verfahren in Echtzeit verfolgt. Die Methode und Ergebnisse der Studie ermöglichen neue Einsichten in die Muskelentwicklung sowie die Behandlung von geschädigten Musk ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.