q&more
Meine Merkliste
my.chemie.de  
Login  

News

Evolution in Echtzeit: Wie sich Bakterien an ihre Wirte anpassen

Bakterien werden zunehmend infektiöser, wenn sie von Zelle zu Zelle wechseln müssen, um zu überleben

© Patrick Arthofer

Das fluoreszenzmikroskopische Bild zeigt zwei Amöbenzellen in pink, die mit Parachlamydien (gelb/blau), die in der Umwelt weit verbreitet sind, infiziert sind.

20.08.2020: Bakterien, die in tierische Zellen eindringen, um sich dort zu vermehren, sind in der Natur weit verbreitet. Wir kennen sie als Krankheitserreger von Menschen und Tieren. In der Umwelt findet man sie häufig innerhalb von Einzellern. Ein Forschungsteam um Matthias Horn am Zentrum für Mikrobiologie und Umweltsystemwissenschaften der Universität Wien konnte nun im Labor nachvollziehen, wie sich diese Bakterien im Laufe der Zeit an ihre Wirtszelle anpassen und immer infektiöser werden. Ursache dafür: Änderungen im Genom und bei der Genexpression, vor allem bei Genen, die die Interaktion der Bakterien mit ihren Wirten steuern und jenen, die für den Bakterienstoffwechsel verantwortlich sind.

Im Labor des Zentrums für Mikrobiologie und Umweltsystemwissenschaften der Universität Wien wurden über 14 Monate hinweg so genannte "Parachlamydien" bei ihrer Evolution beobachtet, eine Gattung der Umweltchlamydien, wie sie in Wasser oder Erde vorkommen. Im Gegensatz zu ihren humanpathogenen Verwandten sind sie für den Menschen nicht infektiös. Sie leben in Einzellern und sind auf Nährstoffe ihrer Wirte angewiesen. Daher haben sie im Laufe der Zeit Mechanismen perfektioniert, um in Wirtszellen einzudringen und sich dort vermehren zu können.

Theoretische Vorhersagen im Labor bestätigt

Die Parachlamydien dienen den Forschern als Modellsystem, um die Anpassungen wirts-abhängiger Bakterien zu untersuchen. Das dafür durchgeführte Evolutionsexperiment umfasste 500 Bakteriengenerationen, was einer Zeitspanne von ca. 15.000 Jahren beim Menschen entspricht. Um theoretische Vorhersagen zur Entwicklung von Infektiosität zu überprüfen, wurden die Bakterien unter zwei verschiedenen experimentellen Bedingungen im Labor gehalten. In einem Teil des Experiments waren die Bakterien auf eine häufige Infektion neuer Wirtszellen angewiesen, um zu überleben. Im anderen konnten sie sich auch dauerhaft innerhalb ein und derselben Wirtszelle vermehren. Die Ergebnisse zeigen: Können die Bakterien innerhalb einer Wirtszelle bleiben und dafür sorgen, dass sie bei der Zellteilung des Wirts auch in den Tochterzellen der Wirte weiterleben, verändert sich ihre Infektiosität nicht. Bakterien werden jedoch zunehmend infektiöser, wenn sie von Wirtszelle zu Wirtszelle wechseln müssen, um zu überleben.

Anpassungen der Bakterien auf molekularer Ebene

Die Forscher um Matthias Horn und den Erstautor der Studie, Paul Herrera, gingen einen Schritt weiter in ihren Experimenten. Sie untersuchten die Gene der Bakterien zu Beginn des Evolutionsprozesses und verglichen diese mit den Genen nach 500 Bakterien-Generationen. Dabei zeigte sich, dass sich die Gene der beiden Bakteriengruppen an 1.161 Stellen deutlich unterscheiden.

Diese genetischen Informationen alleine waren jedoch noch nicht ausreichend, die Unterschiede in der Infektiosität zu erklären. Erst die anschließende Analyse der Genexpression – also der Verwendung der knapp 2.500 Gene während der Infektion –  ergab: Die infektiösen Bakterien, die zwischen Wirtszellen wechseln müssen, zeigten Veränderungen bei der Expression von Genen für den Infektionsmechanismus und für bestimmte Stoffwechselwege, die für das Überleben außerhalb der Wirtszellen wichtig sind.

"Der Übertragungsweg spielt eine entscheidende Rolle bei der Entwicklung von Infektiosität wirtsabhängiger Bakterien. Der beobachtete Anstieg der Infektiosität beruht auf einer Vielzahl genetischer Unterschiede und starken Veränderungen in der Genexpression. Sie führen dazu, dass die Wirtszellen leichter infiziert werden und die Bakterien außerhalb der Wirtszelle besser überleben können", resümiert Matthias Horn.

Originalveröffentlichung:
Paul Herrera, Lisa Schuster, Cecilia Wentrup, Lena König, Thomas Kempinger, Hyunsoo Naa, Jasmin Schwarz, Stephan Köstlbacher, Florian Wascher, Markus Zojer, Thomas Rattei, Matthias Horn; "Molecular causes of an evolutionary shift along the parasitism-mutualism continuum in a bacterial symbiont"; PNAS; 2020

Fakten, Hintergründe, Dossiers

  • Bakterien
  • Evolution
  • Chlamydien
  • Genexpression
  • Genexpressionsanalyse

Mehr über Universität Wien

  • News

    Wie Krebszellen unter Stress Chemo-Resistenzen entwickeln

    Ein großes Problem in der Krebstherapie ist die Resistenz gegenüber chemotherapeutischen Maßnahmen. Besonders bei wiederkehrenden Erkrankungen zeigen sich die Krebszellen gegenüber der Behandlung oft unempfindlich. Ein internationales Team um die Biochemiker Robert Ahrends von der Universit ... mehr

    Wie Feinstaub aus Schadstoff-Gasen entsteht

    Wenn in asiatischen Mega-Cities Winter-Smog herrscht, misst man in den Straßen mehr Feinstaub, als es eigentlich geben dürfte. Ein internationales Team mit Beteiligung von Forschern der Goethe-Universität Frankfurt sowie der Universitäten in Wien und Innsbruck hat jetzt herausgefunden, dass ... mehr

    Viren-Killer in alten Heilpflanzen aufspüren

    Viele Organismen müssen sich gegen Fressfeinde, Krankheiten oder Schädlinge wehren. Mit ihren Stoffwechselprodukten bestücken sie ein chemisches Arsenal, das seit Menschengedenken in der Heilkunde verwendet wird. Mit modernen Methoden durchforstet ein Team um Judith Rollinger überliefertes ... mehr

  • q&more Artikel

    Superfood & Alleskönner?

    Egal, ob die Web-Community abnehmen oder sich gesund ernähren will, Chia, das Superfood, ist immer dabei und gilt manchen als „Alleskönner“. Einschlägige Internet-Foren kommunizieren die verschiedensten Rezepte von Chia-Pudding und Chia Fresca, gefolgt von solchen für Muffins und sogar Marm ... mehr

  • Autoren

    Prof. Dr. Susanne Till

    Jg. 1955, ist Universitätslehrerin und seit über 30 Jahren am Department für Ernährungswissenschaften der Universität Wien. Schwerpunkte in der Lehre der promovierten Biologin (Hauptfach Botanik) sind Botanik und Biologie, Gewürze und einheimische Wildpflanzen in der Humanernährung sowie Qu ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.