q&more
Meine Merkliste
my.chemie.de  
Login  

News

Selbstheilende Elektronik aus lebenden Zellen?

Elektroschock für Bakterien aktiviert das Stromnetz der Natur

pixabay.com

Symbolbild

19.08.2020: Der Meeresboden und der Boden unter unseren Füßen sind von winzigen Nanodrähten durchsetzt - 1/100.000stel der Breite eines menschlichen Haares -, die von Milliarden von Bakterien erzeugt werden, die aus organischen Abfällen elektrische Ströme erzeugen können. In einer neuen Forschungsarbeit, die am 17. August in der Zeitschrift Nature Chemical Biology veröffentlicht wurde, beschreiben Yale-Forscher, wie dieses verborgene Stromnetz mit einem kurzen Ruck eines elektrischen Feldes aktiviert werden könnte.

"Wir leben in einer elektrischen Welt", so Nikhil Malvankar, Assistenzprofessor für molekulare Biophysik und Biochemie am Microbial Science Institute am Yale West Campus und Seniorautor des Artikels. "Die Stärke und Leitfähigkeit dieser Nanodrähte, gepaart mit der Fähigkeit von Bakterien, sich selbst zu reparieren, könnte dazu beitragen, dauerhafte, selbstheilende Elektronik aus lebenden Zellen zu schaffen", so Malvankar.

In Umgebungen ohne Sauerstoff "atmet" das Bakterium Geobacter, indem es winzige Proteinfäden, so genannte Nanodrähte, in bakterielle Gemeinschaften, die als Biofilme bekannt sind, projiziert, um überschüssige Elektronen zu entsorgen, die bei der Umwandlung von organischem Abfall in Elektrizität entstehen. Doch es ist ein Rätsel geblieben, wie diese Bakterien, die sich wie Apartment-Hochhäuser übereinander stapeln, Elektronen über Entfernungen schicken, die 100 Mal so gross sind wie sie selbst.

In früheren Forschungsarbeiten zeigte das Team, dass Nanodrähte, die aus einem Protein namens OmcS bestehen, über ihre gesamte Länge winzige metallische Bausteine oder Hämatome enthalten. OmcS überträgt Elektrizität. Die neue Studie ergab, dass die Bakterien, wenn sie durch ein elektrisches Feld stimuliert werden, bisher unbekannte Nanodrähte eines anderen, effizienteren Proteins, OmcZ, produzieren. Es überträgt Elektrizität 1.000 Mal effizienter als OmcS.

Sibel Ebru Yalcin, Forschungswissenschaftlerin am Yale Microbial Sciences Institute, leitete diese Arbeit mit den Doktoranden J. Patrick O'Brien, Yangqi Gu und Krystle Reiss.

"Überraschenderweise können Nanodrähte in extrem sauren Umgebungen, in denen die meisten Proteine zerfallen, standhalten und funktionieren", bemerkte Yalcin. "Dies bietet eine einzigartige Gelegenheit, neuartige Sensoren und hoch belastbare Materialien zu entwickeln".

Originalveröffentlichung:
Sibel Ebru Yalcin et al.; "Electric field stimulates production of highly conductive microbial OmcZ nanowires"; Nature Chemical Biology; 2020

Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.