q&more
Meine Merkliste
my.chemie.de  
Login  

News

Neue Art von Teamwork in Wasserstoff produzierendem Enzym entdeckt

Erkenntnisse sollen dazu beitragen, in Zukunft effizientere miniaturisierte Hydrogenasen-Katalysatoren zu entwickeln

© RUB, Marquard

Oliver Lampret (links) und Thomas Happe haben neue Einblicke in die Funktion Wasserstoff produzierender Enzyme erlangt, wie sie in Grünalgen vorkommen.

18.08.2020: Der Transport von Protonen und der Transport von Elektronen in Hydrogenase-Enzymen wurden bislang getrennt voneinander betrachtet. Dabei ist die Kopplung der Schlüssel zum Erfolg.

Hydrogenasen können Wasserstoff genauso effizient umsetzen wie teure Platinkatalysatoren. Um sie für biotechnologische Anwendungen nutzbar zu machen, entschlüsseln Forscher ihre Funktionsweise im Detail. Ein Team der Ruhr-Universität Bochum und University of Oxford berichtet nun in der Zeitschrift „Proceedings of the National Academy of Sciences“, kurz PNAS, dass der Transfer von Protonen und Elektronen durch das Enzym zwar räumlich getrennt stattfindet, aber dennoch gekoppelt und für die Effizienz entscheidend ist.

Effizienteste Wasserstoffproduzenten

Die sogenannten [FeFe]-Hydrogenasen, die zum Beispiel in Grünalgen vorkommen, sind die effizientesten Wasserstoffproduzenten der Natur. Sie können sowohl Wasserstoff katalytisch herstellen als auch Wasserstoff spalten. Die eigentliche chemische Reaktion findet am aktiven Zentrum tief im Inneren des Enzyms statt. „Die für die Reaktion erforderlichen Elektronen und Protonen müssen also einen effizienten Weg dorthin finden“, erklärt Dr. Oliver Lampret aus der Bochumer Arbeitgruppe Photobiotechnologie, Erstautor des Papers. Der Elektronentransport erfolgt dabei sozusagen über einen elektrischen Draht, der aus mehreren Eisen-Schwefel-Clustern besteht. Die Protonen werden über einen Protonentransferpfad, bestehend aus fünf Aminosäuren und einem Wassermolekül, zum aktiven Zentrum befördert.

„Es war zwar bekannt, dass es einen Protonen-gekoppelten Elektronentransfer-Mechanismus gibt, aber bislang hatten Forscher angenommen, dass die Kopplung erst am aktiven Zentrum selbst stattfindet“, sagt Prof. Dr. Thomas Happe, Leiter der Arbeitsgruppe Photobiotechnologie.

Protein Engineering macht Kopplung sichtbar

Das Team manipulierte die Hydrogenasen so, dass der Protonentransfer deutlich langsamer wurde, aber immer noch Wasserstoff umgesetzt werden konnte. Mit dynamischer Elektrochemie zeigten sie, dass der Wasserstoffumsatz dadurch deutlich abnahm und außerdem Überspannungen nötig waren, um die Produktion oder Zerlegung von Wasserstoff zu katalysieren. Durch Manipulation des Protonentransferpfades hatten die Forscher indirekt die Rate des Elektrontransfers vermindert.

„Da die zwei Transferwege räumlich voneinander getrennt sind, gehen wir davon aus, dass eine kooperative Langstreckenkopplung beider Prozesse für eine effiziente Katalyse nötig ist“, resümiert Oliver Lampret. Die Erkenntnisse sollen dazu beitragen, in Zukunft effizientere miniaturisierte Hydrogenasen-Katalysatoren zu entwickeln.

Originalveröffentlichung:
Oliver Lampret et al.; "The roles of long-range proton coupled electron transfer in the directionality and efficiency of [FeFe]-hydrogenases"; PNAS; 2020

Fakten, Hintergründe, Dossiers

  • Hydrogenasen
  • Enzyme
  • Protonen-Transport
  • [FeFe]-Hydrogenasen

Mehr über Ruhr-Universität Bochum

  • News

    Metallorganische Netzwerke werden flexibel

    Materialien aus anorganischen und organischen Komponenten können das Beste aus zwei Welten vereinen: Unter bestimmten Umständen sind dreidimensionale Netzwerke aus metallorganischen Verbindungen, die sogenannten Metal-Organic Frameworks, kurz MOFs, so geordnet aufgebaut wie Kristalle und zu ... mehr

    Tumore finden und dabei gleich angreifen

    Die Kombination aus einem Biomolekül und einem Metallkomplex kann Krebszellen gezielt aufsuchen, binden, markieren und schädigen. Ein solches sogenanntes Theranostikum, das Tumorzellen durch die Bestrahlung mit sichtbarem Licht erkennbar macht, konnte ein deutsch-spanisches Team herstellen ... mehr

    Programmierbare synthetische Materialien

    In der DNA ist die Information in der Abfolge chemischer Bausteine gespeichert, in Computern bestehen Information aus Sequenzen von Nullen und Einsen. Dieses Konzept wollen Forscher auf künstliche Moleküle übertragen. Künstliche Moleküle könnten eines Tages die Informationseinheit einer neu ... mehr

  • q&more Artikel

    Maßgeschneiderte Liganden eröffnen neue Reaktionswege

    Zum ersten Mal konnte ein effizienter Katalysator für die palladiumkatalysierten C–C-Bindungs-knüpfungen zwischen Arylchloriden und Alkyllithium-Verbindungen gefunden werden. Diese Reaktion ermöglicht einfachere Synthesewege für wichtige Produkte. mehr

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Henning Steinert

    Henning Steinert, Jahrgang 1993, studierte an der Carl‑von‑Ossietzky Universität Oldenburg Chemie, wo er sich unter anderem mit der Aktivierung von Si–H-Bindungen an Titankomplexen beschäftigte. Aktuell promoviert er an der Ruhr-Universität Bochum am Lehrstuhl für Anorganische Chemie II von ... mehr

    Prof. Dr. Viktoria Däschlein-Gessner

    Viktoria Däschlein-Gessner, Jahrgang 1982, studierte Chemie an den Universitäten Marburg und Würzburg und promovierte im Jahr 2009 an der TU Dortmund. Nach einem Postdoc-Aufenthalt an der University of California in Berkeley (USA) leitete sie eine Emmy-Noether-Nachwuchsgruppe an der Univers ... mehr

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

Mehr über University of Oxford

  • News

    Aufbau sozialer Netzwerke im Gehirn

    Die drei Proteine Teneurin, Latrophilin und FLRT halten zusammen und bringen benachbarte Nervenzellen in Kontakt, damit sich Synapsen bilden und die Zellen Informationen austauschen können. In der Frühphase der Gehirnentwicklung führt die Interaktion derselben Proteine jedoch dazu, dass sic ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.