q&more
Meine Merkliste
my.chemie.de  
Login  

News

Programmierbare synthetische Materialien

In Zukunft könnten MOFs die Basis programmierbarer chemischer Moleküle sein

© RUB, Marquard

Tong Li ist Expertin für Atomsondentomografie.

10.08.2020: In der DNA ist die Information in der Abfolge chemischer Bausteine gespeichert, in Computern bestehen Information aus Sequenzen von Nullen und Einsen. Dieses Konzept wollen Forscher auf künstliche Moleküle übertragen.

Künstliche Moleküle könnten eines Tages die Informationseinheit einer neuen Art von Computern bilden oder die Basis für programmierbare Substanzen sein. Die Information wäre in der räumlichen Anordnung der einzelnen Atome codiert – ähnlich wie die Abfolge der Basenpaare den Informationsgehalt der DNA bestimmt oder Sequenzen von Nullen und Einsen das Gedächtnis der Computer bilden. Einen Schritt hin zu dieser Vision haben Forscher der Ruhr-Universität Bochum (RUB) und University of California in Berkeley gemacht. Sie zeigten, dass man mithilfe der Atomsondentomografie eine komplexe räumliche Anordnung von zufällig verteilten Metallatomen bestimmen kann – und somit potenziell die Information, die in einer Atomanordnung codiert wäre, wieder auslesen könnte.

In der Fachzeitschrift „Science“, online veröffentlicht am 7. August 2020, beschreibt Prof. Dr. Tong Li, Leiterin der Forschungsgruppe Atomic-scale Characterisation am Institut für Werkstoffe der RUB, zusammen mit Dr. Zhe Ji und Prof. Dr. Omar Yaghi aus Berkeley die Methode.

Metallsequenzen decodieren

Als Basis für eine Informationscodierung mit Atomen kommen sogenannte Metal-Organic-Frameworks, kurz MOFs, infrage. Dabei handelt es sich um poröse kristalline Gebilde mit einer definierten räumlichen Struktur, in die sich einzelne Atome einlagern können. Um in der Anordnung der eingelagerten Atome Informationen zu codieren, muss die Anordnung jedoch gezielt erfolgen können, veränderbar sein und auch wieder ausgelesen werden können.

Das Auslesen der Information in MOFs gelang bislang jedoch nur bei sehr einfachen räumlichen Anordnungen, die sich nicht eignen würden, um komplexe Informationen damit zu codieren. In der aktuellen Studie zeigte das Forschungsteam, das sich mittels Atomsondentomografie auch kompliziertere räumliche Anordnungen von Metallatomen bestimmen lassen. Mit dem Verfahren, für das die Bochumer Materialwissenschaftlerin Tong Li eine Expertin ist, lassen sich einzelne Atome sichtbar machen. Die Gruppe arbeitete mit dem sogenannten MOF-74, in das sie einzelne Atome Kobalt, Cadmium, Blei und Mangan zufällig einlagerte. Anschließend entschlüsselte sie deren räumliche Struktur.

Genauso raffiniert wie die Biologie

In Zukunft könnten MOFs die Basis programmierbarer chemischer Moleküle sein: So könnte ein MOF beispielsweise programmiert werden, einen pharmazeutischen Wirkstoff in den Körper einzubringen, dabei gezielt infizierte Zellen ansteuern und nicht mehr benötigten Wirkstoff zu harmlosen Substanzen abzubauen. Sie könnten aber beispielsweise auch für die Abscheidung von CO2 zum Einsatz kommen und gleichzeitig dazu dienen, das CO2 in einen nützlichen Ausgangsstoff für die chemische Industrie umzuwandeln.

„Langfristig können solche Strukturen mit einprogrammierten Atomsequenzen unsere Denkweise in Bezug auf die Materialsynthese komplett verändern“, so die Autoren. „Die synthetische Welt könnte ein ganz neues Level der Präzision und Raffinesse erreichen, das bislang der Biologie vorbehalten war.“

Originalveröffentlichung:
Zhe Ji, Tong Li, Omar M. Yaghi; "Sequencing of metals in multivariate metal-organic frameworks"; Science; 2020

Fakten, Hintergründe, Dossiers

  • künstliche Moleküle
  • Atomsondentomografie
  • Atome
  • Metal-Organic Frameworks

Mehr über Ruhr-Universität Bochum

  • News

    Metallorganische Netzwerke werden flexibel

    Materialien aus anorganischen und organischen Komponenten können das Beste aus zwei Welten vereinen: Unter bestimmten Umständen sind dreidimensionale Netzwerke aus metallorganischen Verbindungen, die sogenannten Metal-Organic Frameworks, kurz MOFs, so geordnet aufgebaut wie Kristalle und zu ... mehr

    Tumore finden und dabei gleich angreifen

    Die Kombination aus einem Biomolekül und einem Metallkomplex kann Krebszellen gezielt aufsuchen, binden, markieren und schädigen. Ein solches sogenanntes Theranostikum, das Tumorzellen durch die Bestrahlung mit sichtbarem Licht erkennbar macht, konnte ein deutsch-spanisches Team herstellen ... mehr

    Neue Art von Teamwork in Wasserstoff produzierendem Enzym entdeckt

    Der Transport von Protonen und der Transport von Elektronen in Hydrogenase-Enzymen wurden bislang getrennt voneinander betrachtet. Dabei ist die Kopplung der Schlüssel zum Erfolg. Hydrogenasen können Wasserstoff genauso effizient umsetzen wie teure Platinkatalysatoren. Um sie für biotechnol ... mehr

  • q&more Artikel

    Maßgeschneiderte Liganden eröffnen neue Reaktionswege

    Zum ersten Mal konnte ein effizienter Katalysator für die palladiumkatalysierten C–C-Bindungs-knüpfungen zwischen Arylchloriden und Alkyllithium-Verbindungen gefunden werden. Diese Reaktion ermöglicht einfachere Synthesewege für wichtige Produkte. mehr

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Henning Steinert

    Henning Steinert, Jahrgang 1993, studierte an der Carl‑von‑Ossietzky Universität Oldenburg Chemie, wo er sich unter anderem mit der Aktivierung von Si–H-Bindungen an Titankomplexen beschäftigte. Aktuell promoviert er an der Ruhr-Universität Bochum am Lehrstuhl für Anorganische Chemie II von ... mehr

    Prof. Dr. Viktoria Däschlein-Gessner

    Viktoria Däschlein-Gessner, Jahrgang 1982, studierte Chemie an den Universitäten Marburg und Würzburg und promovierte im Jahr 2009 an der TU Dortmund. Nach einem Postdoc-Aufenthalt an der University of California in Berkeley (USA) leitete sie eine Emmy-Noether-Nachwuchsgruppe an der Univers ... mehr

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.