q&more
Meine Merkliste
my.chemie.de  
Login  

News

Einblicke in die Struktur eines rätselhaften Katalysators

© RUB, Marquard

Abgase aus der Industrie sinnvoll nutzen ist das Ziel des Projekts Carbon-2-Chem.

05.08.2020: Der Katalysator für die Produktion von Methanol hatte sich in der Vergangenheit allen Versuchen, seine Struktur aufzuklären, entzogen. Jetzt wissen Forscher mehr über sein aktives Zentrum.

Methanol ist eine der wichtigsten Basischemikalien, etwa um Kunststoffe oder Baumaterialien herzustellen. Um den Produktionsprozess noch effizienter gestalten zu können, wäre es hilfreich, mehr über den Kupfer-Zinkoxid-Aluminiumoxid-Katalysator zu wissen, der bei der Methanolherstellung im Einsatz ist. Bislang war es jedoch nicht möglich, seine Oberfläche unter Reaktionsbedingungen mit strukturaufklärenden Methoden zu untersuchen. Einem Team der Ruhr-Universität Bochum (RUB) und des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) ist es dennoch gelungen, Einblicke in den Aufbau seines aktiven Zentrums zu gewinnen.

Das Team zeigte erstmals, dass die Zink-Komponente des aktiven Zentrums positiv geladen ist und dass der Katalysator sogar zwei kupferbasierte aktive Zentren besitzt. „Über den Zustand der Zink-Komponente am aktiven Zentrum wurde seit Einführung des Katalysators in den 1960er-Jahren kontrovers diskutiert. Aus unseren Erkenntnissen können wir nun zahlreiche Ideen ableiten, wie wir den Katalysator in Zukunft optimieren können“, resümiert Prof. Dr. Martin Muhler, Leiter des Lehrstuhls für Technische Chemie an der RUB und Max Planck Fellow am MPI CEC. Er kooperierte für die Arbeiten mit dem Bochumer Forscher Dr. Daniel Laudenschleger und dem Mülheimer Forscher Dr. Holger Ruland.

Methanol nachhaltig herstellen

Die Arbeiten waren eingebettet in das Projekt Carbon-2-Chem, das zum Ziel hat, Hüttengase, die bei der Stahlproduktion anfallen, für die Herstellung von Chemikalien zu nutzen und so den CO2-Ausstoß zu verringern. Auch für eine nachhaltige Methanolsynthese könnten Hüttengase als Ausgangsstoff dienen, zusammen mit elektrolytisch hergestelltem Wasserstoff. Im Rahmen von Carbon-2-Chem untersuchte das Forschungsteam zuletzt, wie sich Verunreinigungen in Hüttengasen, die zum Beispiel in der Kokerei oder dem Hochofen entstehen, auf den Katalysator auswirken. Diese Arbeiten ermöglichten letztendlich auch die Erkenntnisse über den Aufbau des aktiven Zentrums.

Aktives Zentrum für Analyse deaktiviert

Die Forscher hatten stickstoffhaltige Substanzen – Ammoniak und Amine – als Verunreinigungen identifiziert, die als Katalysatorgift wirken. Sie deaktivieren den Katalysator, allerdings nicht dauerhaft: Verschwinden die Verunreinigungen, erholt sich der Katalysator von selbst. Mithilfe einer einzigartigen selbst gebauten Forschungsapparatur – einer Flussapparatur mit integrierter Hochdruck-Pulseinheit – leiteten die Forscher Ammoniak und Amine über die Katalysatoroberfläche, wodurch sie das aktive Zentrum mit Zink-Komponente zeitweilig deaktivierten. Trotz dieser Deaktivierung der Zink-Komponente konnte weiterhin eine andere Reaktion am Katalysator stattfinden: nämlich die Umsetzung von Ethen zu Ethan. Auf diese Weise wiesen die Forscher ein parallel arbeitendes zweites aktives Zentrum nach, das metallisches Kupfer beinhaltet, aber keine Zink-Komponente besitzt.

Da Ammoniak und die Amine an positiv geladene Metallionen auf der Oberfläche gebunden werden, war damit klar, dass Zink als Teil des aktiven Zentrums eine positive Ladung trägt.

Originalveröffentlichung:
Daniel Laudenschleger, Holger Ruland, Martin Muhler; "Identifying the nature of the active sites in methanol synthesis over Cu/ZnO/Al2O3 catalysts"; Nature Communications; 2020

Fakten, Hintergründe, Dossiers

Mehr über Ruhr-Universität Bochum

  • News

    Neue Art von Teamwork in Wasserstoff produzierendem Enzym entdeckt

    Der Transport von Protonen und der Transport von Elektronen in Hydrogenase-Enzymen wurden bislang getrennt voneinander betrachtet. Dabei ist die Kopplung der Schlüssel zum Erfolg. Hydrogenasen können Wasserstoff genauso effizient umsetzen wie teure Platinkatalysatoren. Um sie für biotechnol ... mehr

    Programmierbare synthetische Materialien

    In der DNA ist die Information in der Abfolge chemischer Bausteine gespeichert, in Computern bestehen Information aus Sequenzen von Nullen und Einsen. Dieses Konzept wollen Forscher auf künstliche Moleküle übertragen. Künstliche Moleküle könnten eines Tages die Informationseinheit einer neu ... mehr

    Immunprotein hemmt Sars-Cov-2

    Ein Protein, das vom menschlichen Immunsystem produziert wird, kann Coronaviren stark hemmen, darunter auch Sars-Cov-2, den Erreger von Covid-19. Ein internationales Team aus Deutschland, der Schweiz und den USA konnte zeigen, dass das LY6E-Protein Coronaviren daran hindert, eine Infektion ... mehr

  • q&more Artikel

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

    Mathies V. Evers

    Mathies Evers, Jahrgang 1989, studierte Chemie an der Ruhr-Universität Bochum, wo er an der Synthese atompräziser molekularer Cluster forschte. Nach seinem Masterabschluss begann er seine Doktorarbeit am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik und wird durch den ... mehr

    Prof. Dr. Kristina Tschulik

    Kristina Tschulik promovierte im Jahr 2012 an der TU Dresden und arbeitete als Postdoktorandin am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden sowie an der Universität Oxford. Danach baute sie gefördert durch ein NRW-Rückkehrprogramm die Arbeitsgruppe für „Elektrochemie u ... mehr

Mehr über Max-Planck-Institut für chemische Energiekonversion

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.