q&more
Meine Merkliste
my.chemie.de  
Login  

News

Wie Abwehrzellen den Killermodus aktivieren

Forscher finden fehlendes Bindeglied in der Immunantwort

Susana Minguet

T-Lymphozyten nutzen den T-Zellrezeptor (unter der Lupe), um Zellen, die mit Viren und Bakterien infiziert sind, oder Tumorzellen zu erkennen. Forschende aus Freiburg haben entdeckt, wie der Rezeptor die T-Zellen aktiviert, um infizierte Zellen zu vernichten. „Diese Immunantwort erlaubt uns, geschützt und in Harmonie mit der Natur zu leben“, kommentiert Susana Minguet ihre Illustration des Rezeptors.

22.07.2020: Einem Schlüsselmotiv auf der Spur: Die T-Lymphozyten des Immunsystems sorgen dafür, dass infizierte Zellen oder Krebszellen zerstört werden. Dazu müssen sie die Gefahr erkennen: Als körperfremd wahrgenommene Moleküle – so genannte Antigene – binden an den T-Zellrezeptor an der Oberfläche. Wie dieser Erkennungsmechanismus dazu führt, dass die T-Zellen auf Angriff schalten, zeigen nun erstmals die Arbeitsgruppen von Dr. Susana Minguet und Prof. Dr. Wolfgang Schamel der Exzellenzcluster im Bereich biologische Signalforschung BIOSS und CIBSS der Universität Freiburg. In einer Studie, die im Fachmagazin Nature Immunology erschienen ist, stellen sie einen bisher unentdeckten Bereich des T-Zellrezeptors vor und weisen in ersten Ergebnissen im Labor nach, dass dieses so genannte RK-Motiv Immuntherapien gegen Krebs verbessert.

Der T-Zellrezeptor ist eine kleine Maschine aus vielen einzelnen Proteinen. Erkennt er eine infizierte Zelle im Körper, kann innerhalb der T-Zelle am RK-Motiv eine so genannte Kinase binden. Der T-Zellrezeptor ist nun aktiv und bewirkt Veränderungen in der Zelle, die sie in eine Killerzelle verwandeln. „Wir waren erstaunt, dass dieses RK-Motiv bisher nicht beschrieben wurde“, kommentieren Minguet und Schamel die Entdeckung: „Seit über 30 Jahren untersucht die Immunologie nun schon den T-Zellrezeptor.“

Die Erkenntnisse bilden eine Brücke zwischen Gefahrenwahrnehmung und Aktivierung der Immunantwort auf molekularer Ebene. Sie beleuchten somit eine essenzielle Funktionsweise des Immunsystems. T-Zellen erfüllen verschiedene Funktionen: Zytotoxische T-Zellen, so genannte Killerzellen, sind dabei besonders für die Vernichtung von eigenen Zellen zuständig, die eine Gefahr für den Körper darstellen – weil Bakterien oder Viren sie infiziert haben oder weil sie sich zu Krebszellen verändern. Die T-Zellen erkennen dabei Antigene ausschließlich an Zellen und schütten dann Giftstoffe aus, die diese Zielzellen zerstören.

In der Immuntherapie gegen Krebs versuchen Ärzte, diese Fähigkeit des Immunsystems zu verstärken. Die CAR-T-Zelltherapie, die am Universitätsklinikum Freiburg schon erfolgreich bei Patienten eingesetzt wird, nutzt im Labor veränderte T-Zellen, die – zurück im Körper der Patienten – Krebszellen gezielt erkennen und abtöten. Die Forscher haben am Centrum für Chronische Immundefizienz (CCI) und in Zusammenarbeit mit Prof. Dr. Robert Zeiser, Universitätsklinikum sowie Mitglied des CIBSS – Centre for Integrative Biological Signalling Studies, nachgewiesen, dass mit dem RK-Motiv bestückte CAR-T-Zellen in Mäusen mehr Krebszellen vernichten als T-Zellen, die dieses Motiv nicht aufweisen.

Das RK-Motiv entdeckten die Wissenschaftler mit einer Verbindung aus Biochemie, synthetischer Biologie und Immunologie. Das RK-Motiv innerhalb des T-Zellrezeptors wird erst nach der Bindung an das Antigen freigelegt und war daher bisher unsichtbar. Diese Kombination der Disziplinen und Untersuchungsebenen gehen aus dem integrativen Ansatz im Exzellenzcluster CIBSS hervor. Die biochemischen Analysen erlauben das Verständnis der molekularen Signale im Detail – deren immunologisches Verständnis und medizinische Anwendung erklären ihre Funktion im Körper.

„Diese Entdeckung ermöglicht uns, T-Zellen gezielter zu steuern. Und das sehr spezifisch, da nur dieser Zelltyp diesen Mechanismus nutzt“, erklärt Minguet. „Das kann in Zukunft nicht nur in der Krebsbehandlung helfen, sondern möglicherweise auch Therapien von Autoimmunerkrankungen oder Immundefizienz verbessern.“

Originalveröffentlichung:
Hartl et al.; "Noncanonical binding of Lck to CD3ε promotes TCR signaling and CAR function"; Nature Immunology; 2020

Fakten, Hintergründe, Dossiers

  • T-Lymphozyten
  • Immunsystem
  • T-Zellen
  • Krebsimmuntherapie

Mehr über Uni Freiburg

  • News

    Neue Einblicke in molekulare Mechanismen für Arzneimittelentwicklung

    Molekulardynamik-Simulationen (MD) sind in den modernen Biowissenschaften allgegenwärtig geworden. Dabei werden die Wechselwirkungen zwischen Atomen und Molekülen sowie deren sich daraus ergebenden räumlichen Bewegungen schrittweise berechnet und dargestellt. Wissenschaftler versuchen derze ... mehr

    Unschuldig und stark oxidierend

    Die chemische Oxidation, also das gezielte Entfernen von Elektronen aus einem Substrat, repräsentiert eine der wichtigsten Transformationen in der Chemie. Die meisten gängigen Oxidationsmittel weisen jedoch oft Nachteile wie unerwünschte Nebenreaktionen auf. Dem Chemiker Marcel Schorpp und ... mehr

    Programmieren mit dem Lichtschalter

    In der Entwicklung autonomer Systeme und Materialien gewinnen selbstorganisierende molekulare Strukturen, die durch chemische Reaktionsnetzwerke gesteuert sind, zunehmend an Bedeutung. Jedoch fehlt es bisher an einfachen externen Mechanismen, die sicherstellen, dass die Komponenten dieser R ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.