q&more
Meine Merkliste
my.chemie.de  
Login  

News

Design zuverlässiger nano- und mikroelektronischer Systeme

Wissenschaftler untersuchen das Verformungsverhalten von Silizium in nanoelektronischen Anwendungen

© Tristan Harzer, Max-Planck-Institut für Eisenforschung GmbH

Zoom mit dem Transmissionselektronenmikroskop in einen Ausschnitt einer kleinen Silizium-Biegefeder. Die eingefärbte Aufnahme zeigt die Versetzungslinien (dunkel). Der weiß umrandete Ausschnitt zeigt die atomare Anordnung von Imperfektionen im Silizium, die durch die mechanische Belastung entstanden sind.

02.07.2020: Silizium verhält sich spröde wie Glas, dennoch ist es das Material auf das wir uns täglich in einer Vielzahl von wichtigen Anwendungen verlassen - egal ob es sich um die Elektronik in unserem Handy handelt, die Datenspeicher in unseren Laptops oder wichtige Sensoren im Auto.

Seit kurzem hat man erkannt, dass sich die mechanischen Eigenschaften von Silizium stark mit der Größe verändern. Schrumpft man Silizium auf Dimensionen, die 100 bis 1000 mal kleiner sind als ein menschliches Haar, ist Silizium nicht mehr spröde sondern wird weich wie Butter. Dies geschieht bei massiven Silizium erst bei hohen Temperaturen oberhalb von 540°C. Wissenschaftler der University of Illinois, USA, und des Max-Planck-Instituts für Eisenforschung (MPIE) haben Federn aus Silizium, die in mikro- und nanoelektro-mechanischen Sensoren verwendet werden, untersucht und ihre Ergebnisse in der Fachzeitschrift PNAS veröffentlicht.

In modernen miniaturisierten Sensoren wird Silizium als elastische Feder in Form von sehr dünnen Biegebalken verwendet. Unklar ist, ob schon bei wesentlich niedrigeren Temperaturen als 540°C diese Federn ihr elastisches Verhalten verlieren und sich stattdessen unter Belastung irreversibel verformen. Die Forscher Dr. Mohammed Elhebeary und Prof. Taher Saif von der University of Illinois entwickelten eine neue Testplattform, die es ermöglicht sehr dünne Siliziumbalken unter Temperatur mechanischer Belastung auszusetzen und live im Elektronenmikroskop zu beobachten wie das Material reagiert. Dabei zeigte sich, dass bereits bei 400°C die dünnen Biegebalken irreversibel verformen. Wieso dies der Fall ist konnten Dr. Tristan Harzer und Prof. Gerhard Dehm vom MPIE durch höchstauflösende Transmissions-Elektronenmikroskopie aufklären. Mit dieser Methode lässt sich das Material bis in den atomaren Bereich untersuchen. Die Max-Planck-Wissenschaftler konnten zeigen, dass bei 400°C unter Stress Versetzungen in dem bis dahin defektfreien Silizium entstanden sind. Versetzungen sind atomare Defekte, welche die Atome verschieben. „In Metallen kommen Versetzungen häufig vor und führen zur guten Umformbarkeit, aber in Silizium sollten sie erst oberhalb von 540°C auftreten.“, erklärt Dehm. Die Entstehung von Versetzungen in Silizium bei 400°C war unerwartet.

Die neuen Erkenntnisse geben den Forschern und Ingenieuren wichtige Informationen für das Design zukünftiger Sensoren aus Silizium, insbesondere wenn sie höheren Temperaturen ausgesetzt werden sollen.

Originalveröffentlichung:
M. Elhebeary, T. Harzer, G. Dehm, T. Saif; "Time dependent plasticity in silicon microbeams mediated by dislocation nucleation"; PNAS, 29. Juni 2020

Fakten, Hintergründe, Dossiers

Mehr über MPI für Eisenforschung

  • News

    Sauerstoff: Fluch und Segen für nanokristalline Legierungen

    Plastische Verformung und Pulververarbeitungstechniken werden gebraucht, um kostengünstig nanostrukturierte Materialien mit maßgeschneiderter Zusammensetzung herzustellen. Diese Verfahren ermöglichen zudem Metalle zu kombinieren, die sich mit herkömmlichen Verfahren nicht mischen lassen. Da ... mehr

    Atomare Einblicke in die Elektrokatalyse

    Elektrokatalysatoren sind für viele industrielle Prozesse wichtig, da sie die Umwandlung von elektrischer Energie in chemische Energie fördern und so dazu beitragen, überschüssige elektrische Energie aus erneuerbaren Energiequellen zu speichern. Wasserstoff wird für die Speicherung von chem ... mehr

    Wissenschaftler entwickeln Stahl mit knochenähnlichen Eigenschaften

    1998 ereignete sich eins der schwersten Zugunglücke Deutschlands in Eschede, Niedersachsen. Ein Radreifen brach und brachte den Zug zur Entgleisung. Grund hierfür war Materialermüdung. Stetige Belastung bestimmter Bauteile beispielsweise in Zügen, Flugzeugen oder auch Kraftwerken, birgt ein ... mehr

Mehr über Max-Planck-Gesellschaft

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.