q&more
Meine Merkliste
my.chemie.de  
Login  

News

Chemiker erzielen Durchbruch bei der Synthese von Graphen-Nanobändern

Nanobänder aus Graphen lassen sich in Zukunft deutlich einfacher herstellen als bisher

seagul, pixabay.com, CC0

Symbolbild

29.06.2020: Einem internationalen Forschungsteam unter Leitung der Martin-Luther-Universität Halle-Wittenberg (MLU), der University of Tennessee und des Oak Ridge National Laboratory in den USA ist es erstmals gelungen, das vielseitige Material direkt auf Halbleiter-Stoffen herzustellen. Bisher war das nur auf Metall-Oberflächen möglich. Mit dem neuen Ansatz lassen sich auch die Eigenschaften der Nanobänder wie gewünscht anpassen. Einsatz finden könnte das Material zum Beispiel in der Speichertechnik.

Graphen wird in Fachkreisen seit Jahren als Material der Zukunft gehandelt. Dabei handelt es sich vereinfacht gesagt um zweidimensionale Kohlenstoffflächen, die in ihrer Struktur an Bienenwaben erinnern. Durch seine spezielle Anordnung erhält das Material besondere Eigenschaften: Es ist zum Beispiel äußerst stabil und ultraleicht. Graphen-Nanobänder sind dabei von besonderem Interesse, weil sie ein Halbleitermaterial sind, das zum Beispiel in der Elektro- und Computerindustrie eingesetzt werden könnte. "Deshalbkonzentrieren sich die viele Arbeitsgruppen weltweit auf Graphen-Nanobänder", erklärt der Chemiker Prof. Dr. Konstantin Amsharov von der MLU. Diese nur Nanometer großen Bänder bestehen aus wenigen Kohlenstoffatomen in der Breite, ihre Eigenschaften ergeben sich aus ihrer Form und Breite. Zu Beginn der Graphenforschung wurden diese Bänder hergestellt, indem größere Flächen zerschnitten wurden. "Das war ein sehr kompliziertes und ungenaues Verfahren", so Amsharov weiter.

Gemeinsam mit Forschern aus Deutschland, den USA und Polen ist es ihm nun gelungen, die Herstellung der begehrten Nanobänder sehr stark zu vereinfachen: Dafür nutzte das Team ein Verfahren, um das Material herzustellen, bei dem einzelne Atome aneinandergefügt werden. So lassen sich die Eigenschaften wie gewünscht anpassen. Den Forschern ist es nun zum ersten Mal gelungen, die Bänder auf der Oberfläche von Titanoxid, einem nicht-metallischen Material, herzustellen. "Bisher wurden die Bänder vor allem auf Goldoberflächen synthetisiert. Das ist nicht nur vergleichsweise teuer, sondern auch unpraktisch", so Amsharov. Das Problem an diesem Ansatz sei nämlich, dass Gold Strom leitet. Dadurch würde es die Eigenschaften der Graphen-Nanobänder direkt wieder zunichtemachen, weshalb diese Methode bisher nur in der Grundlagenforschung zum Einsatz kam. Das Gold wurde aber als Katalysator benötigt, um die Nanobänder überhaupt herzustellen. Außerdem mussten die Nanobänder im Anschluss von der Goldoberfläche auf eine andere transferiert werden, ein sehr kniffliges Unterfangen. Der neue Ansatz von Amsharov und seinen Kollegen löst diese Reihe von Problemen.

"Mit unserer neuen Methode haben wir die komplette Kontrolle darüber, wie die Graphen-Nanobänder zusammengesetzt werden. Das Verfahren ist technologisch relevant, kann also auch industriell angewendet werden, und ist kostengünstiger als bisherige Ansätze", fasst Amsharov zusammen. Die Anwendungsgebiete für die Nanobänder sind groß: Sie könnten künftig in der Speicher- und Halbleitertechnik zum Einsatz kommen und sind auch eine wichtige Voraussetzung für die Entwicklung von Quantencomputern.

Originalveröffentlichung:
Kolmer M. et al.; "Rational synthesis of atomically precise graphene nanoribbons directly on metal oxide surfaces"; Science; 2020

Fakten, Hintergründe, Dossiers

Mehr über MLU

  • News

    Hat Luftverschmutzung einen Einfluss auf den Verlauf der Corona-Krankheit?

    (dpa) Starke Luftverschmutzung und schwerere Verläufe der Corona-Krankheit Covid-19 stehen möglicherweise in einem Zusammenhang. Das sagen zumindest bestimmte Forscher, andere sind skeptisch. Wie eine Studie des Geowissenschaftlers Yaron Ogen von der Martin-Luther-Universität Halle-Wittenbe ... mehr

    Neue präzisere Cas9-Variante

    CRISPR-Cas9 kann DNA spezifisch an definierten Stellen schneiden und hat damit die Genetik revolutioniert. Forscher benutzen die sogenannte Genschere unter anderem dazu, Gene gezielt auszuschalten oder neue DNA Fragmente in das Genom einzufügen. Aber egal wie spezifisch das Cas9-Enzym ist - ... mehr

    Neuer Antibiotika-Wirkstoff wirkt auch bei resistenten Bakterien

    Forscher der Martin-Luther-Universität Halle-Wittenberg (MLU) haben eine neue, vielversprechende Klasse von Wirkstoffen gegen resistente Bakterien entwickelt. In ersten Tests in Zellkulturen und bei Insekten waren die Substanzen mindestens genau so effektiv wie gängige Antibiotika. Die neue ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.