q&more
Meine Merkliste
my.chemie.de  
Login  

News

Neue Einblicke in molekulare Mechanismen für Arzneimittelentwicklung

Simulationen auf biologisch relevanten Zeitskalen

Photo by Andras Vas on Unsplash

Symbolbild

12.06.2020: Molekulardynamik-Simulationen (MD) sind in den modernen Biowissenschaften allgegenwärtig geworden. Dabei werden die Wechselwirkungen zwischen Atomen und Molekülen sowie deren sich daraus ergebenden räumlichen Bewegungen schrittweise berechnet und dargestellt. Wissenschaftler versuchen derzeit, bei diesem Analyseprozess den Zugang zu biologisch relevanten Längen- und Zeitskalen zu erlangen. Dies ist nötig, um molekulare Prozesse wie Proteinfaltung und Protein-Medikamentenbindung zu beschreiben, was zum Beispiel für die moderne Arzneimittelentwicklung entscheidend ist. Einem Team um Dr. Steffen Wolf und Prof. Dr. Gerhard Stock aus der Arbeitsgruppe Biomolekulare Dynamik am Institut für Physik der Universität Freiburg ist es nun gelungen, in pharmakologisch relevanten Testsystemen die Dynamik von Bindungs- und Abdiffusionsprozessen auf einer Zeitskala von Sekunden bis zu einer halben Minute vorherzusagen.

Aufgrund der Notwendigkeit, atomistische Simulationen mit einer zeitlichen Auflösung von Femtosekunden (10-15 s) durchzuführen, können Forschende Vorgänge, die Sekunden und mehr benötigen, wie zum Beispiel das Binden und Lösen von Wirkstoffen an und von ihrem jeweiligen Zielprotein, noch nicht explizit berechnen. Ein möglicher Ansatz, um Simulationen zu beschleunigen ist die „Grobkörnung“ der gesamten Systemdynamik, die eine Domäne der statistischen Mechanik des Nichtgleichgewichts ist. Dafür müssen langsame Prozesse wie die Protein-Liganden-Abdiffusion und schnelle Prozesse wie Protein-Vibrationen oder Wasserfluktuationen zeitlich getrennt werden: Erst dann können die Wissenschaftler die Langevin-Gleichung verwenden, eine stochastische Differentialgleichung, mit der die Dynamik entlang der relevanten langsamen Freiheitsgrade, also die Zahl der voneinander unabhängigen Bewegungsmöglichkeiten, eines physikalischen Systems beschrieben wird. Mit dieser Gleichung stellen sie die Dynamik des Systems entlang einer Reaktionskoordinate wie der Entfernung des Liganden von seiner Bindungsstelle dar. Alle anderen, schnelleren Bewegungen werden als Reibung berücksichtigt.

Um diese erforderliche Vereinfachung der Systemdynamik zu erreichen, haben die Freiburger Physiker die dissipationskorrigierte „targeted“ MD (dcTMD) entwickelt und mittels Rechnungen auf dem Hochleistungsrechner BinAC an der Universität Tübingen getestet: Durch Anwendung einer Zwangskraft, um ein System aktiv entlang einer interessierenden Koordinate zu ziehen, kann die erforderliche Zugarbeit in freie Energie und Reibungsfelder des Prozesses zerlegt werden. In der aktuellen Veröffentlichung zeigen die Forschenden nun, dass diese dcTMD-Felder als Input für eine Simulation der Langevin-Gleichung entlang des Zugkoordinators verwendbar sind. Dadurch konnten sie die notwendige Rechenleistung stark reduzieren: Die Simulationszeit von einer Millisekunde ist so innerhalb von einigen Stunden auf einem einzigen Rechenkern eines Standard-Desktop-Computers erreichbar. Zudem verändern Langevin-Felder, erklärt Stock, im Gegensatz zu vollständig atomistischen Proteinen bei höheren Temperaturen nicht ihre Struktur. „Daher können Hochtemperatursimulationen eine beschleunigte Dynamik erzeugen. Diese können wir nutzen, um die Dynamik bei einer niedrigeren interessierenden Temperatur wiederherzustellen, bei der sich die Felder aus gezielten MD-Simulationen ableiten.“

Die Freiburger Wissenschaftler haben die die Aufspaltung von Natriumchlorid und von zwei Protein-Ligand-Komplexen als Testsysteme verwendet. In diesen gelang es ihnen, die Dynamik von Bindungs- und Entbindungsprozessen auf einer Zeitskala von Sekunden bis zu einer halben Minute vorherzusagen. „Während die Langevin-Felder nur aus Entbindungssimulationen erzeugt wurden, konnten sie sowohl Entbindungs- als auch Bindungskinetiken innerhalb eines Faktors 20 und Dissoziationskonstanten innerhalb eines Faktors 4 vorhersagen, was im Vergleich mit anderen Vorhersagemethoden im besten erreichbaren Bereich liegt“, erläutert Wolf. Gleichzeitig erfordert dieser neue dcTMD-Ansatz nur ein Zehntel der Rechenleistung als andere Vorhersagemethoden. „Nicht zuletzt erlaubt die Bestimmung von Reibungsprofilen einen Einblick in molekulare Prozesse, die die freie Energie nicht aufzeigt“, sagen die Freiburger Physiker. „Wir fanden heraus, dass in allen untersuchten Systemen die Bildung einer Hydratationsschale aus Wasser die Hauptquelle der Reibung zu sein scheint. Das erlaubt, neue Möglichkeiten für das Design von Medikamenten mit gewünschter Bindungs- und Abdiffusionskinetik abzuleiten.“

Originalveröffentlichung:
Wolf, S., Lickert, B., Bray, S., Stock, G.; "Multisecond ligand dissociation dynamics from atomistic simulations"; Nature Communications; 2020

Fakten, Hintergründe, Dossiers

  • Molekulardynamik
  • Arzneimittelentwicklungen
  • Computersimulationen

Mehr über Uni Freiburg

  • News

    Gemeinsame Schwachstellen von Coronaviren

    Auf der Suche nach neuen Medikamenten gegen COVID-19 deckt eine Gruppe von etwa 200 Wissenschaftlern molekulare Vorgänge auf, mit denen die Coronaviren MERS, SARS-CoV1 und SARS-CoV2 die Wirtszelle manipulieren. Die Forscher aus sechs Ländern fanden 73 menschliche Eiweiße, mit denen Bestandt ... mehr

    Mechanismus entdeckt, der Zellkerne zum Wachsen bringt

    Es ist der wohl wichtigste Prozess in der Zellentwicklung: Um sich zu vermehren, teilen sich Zellen und vergrößern sich anschließend. Ein Forschungsteam um den Freiburger Mediziner Prof. Dr. Robert Grosse hat nun herausgefunden, dass gebündelte Aktinfasern im Inneren eines Zellkerns eine wi ... mehr

    Wie Abwehrzellen den Killermodus aktivieren

    Einem Schlüsselmotiv auf der Spur: Die T-Lymphozyten des Immunsystems sorgen dafür, dass infizierte Zellen oder Krebszellen zerstört werden. Dazu müssen sie die Gefahr erkennen: Als körperfremd wahrgenommene Moleküle – so genannte Antigene – binden an den T-Zellrezeptor an der Oberfläche. W ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.