q&more
Meine Merkliste
my.chemie.de  
Login  

News

"Ultimativen Zellsortierer" entwickelt: Kombination aus Bildgebung von verformten Zellen und KI

Hochgeschwindigkeitsmethode zur Identifikation und Sortierung von Zellen kommt ohne externe Markierung der Zellen aus

Max-Planck-Institut für die Physik des Lichts

Künstlerische Darstellung der KI-gestützten Sortierung einer Blutprobe in einem Durchflusszytometer

27.05.2020: In Medizin und Biologie besteht ein großes Interesse an effizienten und kostengünstigen Methoden zur Identifizierung und Trennung verschiedener Zelltypen, beispielsweise für die medizinische Diagnostik oder für regenerative Therapien mithilfe von Stammzellen. Bislang wird dazu meist die sogenannte Durchflusszytometrie verwendet, bei der Zellen mit fluoreszierenden Antikörpern markiert und beim Durchfluss durch einen Kanal identifiziert werden. Diese Methode hat jedoch ihre Schwachstellen: Sie ist nicht nur relativ teuer und zeitintensiv, sondern auch die Antikörper selbst sind problematisch. Da sie körperfremd sind, können sie die Eigenschaften der Zellen, an die sie andocken, verändern und etwa bei einer Injektion in den Körper Schwierigkeiten bereiten. Auch ist die Identifikation von Zellen bei der Durchflusszytometrie nicht immer fehlerfrei.

Als zusätzliches Unterscheidungsmerkmal lassen sich deshalb physikalische Eigenschaften der Zellen nutzen: Aufgrund des Zytoskeletts, eines feinen Netzwerks von Filamenten in der Zellstruktur, besitzt jede Zellart charakteristische mechanische Eigenschaften wie etwa Form, Größe und insbesondere die Verformbarkeit. Das Team um Jochen Guck, Direktor am Max-Planck-Institut für die Physik des Lichts, hat darauf aufbauend vor einigen Jahren eine neue Technik entwickelt: Die Echtzeit-Verformungszytometrie (real-time deformability cytometry, kurz: RT-DC). Dabei wird eine Zelllösung durch einen transparenten Kanal von weniger als dem Durchmesser eines Haares gedrückt. Die Zellen werden dabei unbeschadet in die Länge gezogen und der Grad der Verformung lässt eine Zuordnung zu einem bestimmten Zelltyp zu.

Die Zuordnung der Zelltypen erfolgt mit Hilfe der Aufnahmen einer Highspeed-Kamera, die die verformten Zellen im Kanal mit 2.000 bis 4.000 Bildern pro Sekunde aufnimmt. Das ist vergleichbar z.B. mit Videos, in denen das Platzen eines Luftballons in Zeitlupe beobachtet werden kann. Die Bilder werden mit einer speziellen Software ausgewertet, die bestimmte, vorher definierte Zelleigenschaften in Echtzeit auswertet. Diese Echtzeit-Auswertung, bei der jede Zelle sofort in dem Moment, in dem sie durch den Kanal fließt, identifiziert wird, ist jetzt die Basis für die erste Neuheit. Denn sie ermöglicht es, die Zellen nach der Identifizierung gezielt in einen Sammelkanal abzulenken. So können Zellen jetzt erstmals auch aufgrund ihrer Verformbarkeit sortiert werden.

Eine weitere Neuheit liegt darin, RT-DC mit künstlicher Intelligenz (KI) zu kombinieren: Hunderttausende Bilder von einzelnen Zellen sind eine ideale Basis, um ein neuronales Netzwerk darauf zu trainieren, verschiedene Zelltypen zu erkennen. In bisher nicht erreichter Geschwindigkeit kann der KI-Algorithmus dann Zellen identifizieren und ebenfalls in Echtzeit nach Wunsch sortieren.

Guck vergleicht diesen Ansatz mit der Stärke von Google: "Wenn Katzenbesitzer im Internet Millionen von Katzenfotos posten und dazu etwas schreiben wie 'meine Katze', wird der Suchalgorithmus anhand des Bilds und des Kommentars darauf trainiert, die Eigenschaften zu erkennen, die eine Katze ausmachen. Wenn dann jemand nach 'Katze' googelt, kann der Algorithmus durch das Training eines neuronalen Netzwerks die Bilder mit Katzeneigenschaften identifizieren und aus allen anderen Haustierfotos herausfiltern."

Ähnlich verhält es sich mit der neuen Methode der Forschergruppe um Guck: Da die Fluoreszenzmoleküle so ausgewählt werden, dass sie nur an bestimmte Zellen andocken, entspricht das Aufleuchten eines Fluoreszenzmoleküls quasi dem Kommentar "meine Katze". Das Foto der Zelle mit all ihren Eigenschaften entspricht dem Katzenbild. So lernt das neuronale Netzwerk, dass ein Aufleuchten mit einem bestimmten Zelltyp verbunden ist und kann eine Verbindung zum dazugehörigen Foto der Zelle herstellen. Wurde das neuronale Netzwerk durch den Fluoreszenzmarker ausreichend auf einen Zelltyp trainiert, kann der Marker schließlich ganz weggelassen werden und der Zelltyp wird auch ohne Fluoreszenz erkannt, genauso wie der Google-Algorithmus gelernt hat, unabhängig von Kommentaren Katzen zu erkennen.

Diese neue Methode hat viele Vorteile: So fällt nach dem Training des neuronalen Netzwerks die zeit- und kostenintensive Floureszenz-Markierung zur Identifizierung weg und die Zellen werden nicht mehr durch körperfremde Moleküle verändert. Dann reichen die von der Highspeed-Kamera geschossenen Bilder aus, um die Zellen zu identifizieren. Dieses Vorgehen ist sehr zellschonend, verändert die Zelleigenschaften nicht und kann bis zu 1.000 Zellen pro Sekunde analysieren. Die Anwendung von künstlicher Intelligenz auf RT-DC bietet außerdem die Erleichterung, dass die Parameter, anhand derer die Zellerkennung oder eine Zellveränderung durch beispielsweise Krankheiten festgemacht werden kann, nicht vorher definiert werden müssen. Man kann die KI selbst entscheiden lassen, anhand welcher Bildinformation Zellen am besten unterschieden werden können.

Guck nennt die neu entwickelte Methode, die nun in der Fachzeitschrift Nature Methods veröffentlicht wurde, einen "ultimativen Zellsortierer": Sie vereint die Genauigkeit der etablierten Erkennung über Fluoreszenz mit der Sensitivität der inhärenten mechanischen Zelleigenschaften und hat das Potential, als zukünftige Standardmethode Einzug in alle biologischen und biomedizinschen Labore zu halten. In Zukunft lassen sich damit beispielsweise schnell, unbeschadet und unverändert blutbildende Stammzellen aus einer Probe gewinnen, die dann einem Chemotherapie-Patienten zum Wiederaufbau des Immunsystems injiziert werden können oder besonders geeignete Photorezeptorzellen aus humanen Organoiden heraussortieren, um damit durch Transplantation manche Formen der Blindheit abzuwenden.

Originalveröffentlichung:
Ahmad Ahsan Nawaz et al.; "Intelligent image-based deformation-assisted cell sorting with molecular specificity"; Nature Methods; 2020

Fakten, Hintergründe, Dossiers

  • Zellsortierung
  • Zellen
  • Zytometrie
  • künstliche Intelligenz

Mehr über MPI für die Physik des Lichts

  • News

    3D-Filme aus der Zellmembran

    Auf die Funktionsweise von Zellen bietet sich nun ein neuer Blick, und der könnte auch Erkenntnisse für die Suche nach neuen Medikamente liefern. Forscher des Max-Planck-Instituts für die Physik des Lichts und des Max-Planck-Zentrums für Physik und Medizin in Erlangen haben eine Methode ent ... mehr

    Photonische Kristallfaser: ein Sensor für alle Fälle

    Glasfasern können mehr als Daten transportieren. Ein spezieller Typ von Glasfasern lässt sich auch als hoch präziser Mehrzwecksensor nutzen, wie Forscher des Max-Planck-Instituts für die Physik des Lichts in Erlangen nun zeigen. Durch das Innere dieser hohlen photonischen Kristallfasern sch ... mehr

    Licht: Weltrekord in Farbe

    Bunter als ein Regenbogen ist das Licht, das Forscher des Max-Planck-Instituts für die Physik des Lichts in Erlangen erzeugen. Die Wissenschaftler schicken einen infraroten Laserpuls mit niedriger Energie durch eine photonische Kristallfaser (PCF), die sie so maßgeschneidert haben, dass sic ... mehr

Mehr über Max-Planck-Gesellschaft

  • News

    Bakterien hinterlassen Signatur in Darmkrebszellen

    Manche Bakterien verursachen Schäden im Erbgut infizierter Zellen, die zu Krebs führen könnten. Dass die Mikroben aber tatsächlich die Ursache einer Krebserkrankung sind, ist schwer nachzuweisen, da Krebs oft erst Jahre später ausbricht. Forscher suchen daher nach einer Signatur, die Bakter ... mehr

    Umweltfreundliche Produktion von Mandelsäure

    Manchmal sind potenziell nützliche Enzyme nicht leicht zu erkennen, weil manche ihrer enzymatischen Fähigkeiten außerhalb des natürlichen und damit bekannten Wirkbereiches liegen. Eine solche Entdeckung machte ein Forscherteam des Max-Planck-Instituts für terrestrische Mikrobiologie unter d ... mehr

    Mikroroboter rollt tief ins Innere des Körpers

    Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) in Stuttgart haben einen winzigen Mikroroboter entwickelt, der einem weißen Blutkörperchen ähnelt, das sich seinen Weg durch den Blutkreislauf bahnt. Der Roboter hat die Form und Größe eines Leukozyten und bewegt sic ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.