q&more
Meine Merkliste
my.chemie.de  
Login  

News

Wenn aus theoretischer Chemie Praxis wird

Topologische 2D-Polymere werden Wirklichkeit

© Yu Jing

Honigwaben-Kagome-Struktur

26.05.2020: Thomas Heine, Professor für Theoretische Chemie an der TU Dresden, hat 2019 zusammen mit seinem Team topologische 2D-Polymere vorhergesagt. Nur ein Jahr später konnten diese Materialien von einem italienischen Forscherteam synthetisiert und deren topologische Eigenschaften experimentell nachgewiesen werden. Für die Fachzeitschrift Nature Materials war das Anlass, Thomas Heine zu einem News and Views Artikel einzuladen, der nun veröffentlicht wurde. Unter dem Titel "Making 2D Topological Polymers a reality" beschreibt Prof. Heine, wie aus seiner Theorie Praxis wurde. 

Ultradünne Materialien sind als Bausteine für nanoelektronische Bauelemente der nächsten Generation äußerst interessant, da es viel einfacher ist, Schaltungen und andere komplexe Strukturen herzustellen, indem man 2D-Schichten in die gewünschten Formen bringt. Thomas Heine, Professor für Theoretische Chemie an der TU Dresden, beschäftigt sich mit der Vorhersage solch innovativer Materialien. Ihre Eigenschaften können mit Hilfe moderner Methoden der Computerchemie präzise berechnet werden, noch bevor sie im Labor realisiert wurden.

Diese Forschung ist insbesondere für 2D-Polymere interessant: hier können aus der schier unendlichen Vielfalt ebener organischer Moleküle jene ausgewählt werden, die aufgrund ihrer Struktur als Bausteine für bestimmte Gittertypen geeignet sind. Ein besonders interessantes Beispiel ist das Kagome-Gitter, das aus den Eckpunkten und Kanten einer trihexagonalen Kachelung besteht. Yu Jing und Thomas Heine schlugen 2019 vor, solche 2D-Polymere aus dreieckigen organischen Molekülen (sogenannten Triangulenen) zu synthetisieren. Diese Materialien haben eine kombinierte Honigwaben-Kagome-Struktur (siehe Abbildung). Die Berechnungen zeigen, dass sie die Eigenschaften von Graphen (quasi masselose Ladungsträger) mit denen von Supraleitern (flache elektronische Bänder) vereinen.

Nun haben der italienische Materialwissenschaftler Giorgio Contini und sein internationales Team dieses 2D-Honigwaben-Kagome-Polymer synthetisiert, wie eine Veröffentlichung in Nature Materials berichtet. Durch eine innovative Oberflächen-synthesemethode konnten Kristalle mit solch hoher Qualität hergestellt werden, dass sie zur experimentellen Charakterisierung der elektronischen Eigenschaften geeignet waren. In der Tat wurden die vorhergesagten faszinierenden topologischen Eigenschaften offenbart. Damit konnte erstmals experimentell nachgewiesen werden, dass topologische Materialien über 2D-Polymere realisiert werden können.

Die Forschung an 2D-Polymeren wird damit auf eine solide Grundlage gestellt. Das hier beschriebene Kagome-Gitter ist nur ein Beispiel aus den hunderten Möglichkeiten, ebene Moleküle zu regulären Gittern zu verknüpfen. Für einige dieser Varianten wurden schon weitere interessante elektronische Eigenschaften theoretisch vorhergesagt. Es eröffnen sich somit zahlreiche neue Möglichkeiten für Theoretiker und Experimentatoren aus Chemie und Physik, Materialien mit bisher unbekannten Eigenschaften zu entwickeln.

Prof. Heine erläutert: „Diese Ergebnisse zeigen, dass 2D-Polymere Materialien mit nützlichen elektronischen Eigenschaften sein können, obwohl deren Strukturen mit Abständen von mehr als einem Nanometer zwischen den Gitterpunkten viel weitmaschiger sind. Voraussetzung ist eine sehr gute Qualität der Materialien. Dazu gehören eine hohe Kristallinität und eine sehr geringe Defektdichte. Ein weiterer wichtiger Beitrag der Kollegen um Prof. Contini ist, dass, obwohl die 2D-Polymere auf einer Metalloberfläche hergestellt wurden, sie abgelöst und auf jedes andere Substrat, wie Siliziumoxid oder Glimmer, übertragen und somit in elektronische Bauelemente eingebaut werden können.“

Originalveröffentlichung:
Yu Jing and Thomas Heine; "Making 2D Topological Polymers a reality"; Nature Materials; 2020

Mehr über TU Dresden

  • News

    Wie teilen sich Tumorzellen im Gedränge?

    Wissenschaftler unter der Leitung von Dr. Elisabeth Fischer-Friedrich, Gruppenleiterin am Exzellenzcluster Physik des Lebens (PoL) und am Biotechnologischen Zentrum der TU Dresden (BIOTEC), untersuchten, wie sich Krebszellen in einem dicht gedrängten Tumorgewebe teilen können. Dabei prüften ... mehr

    Erstmals Synthese von Dodecacen gelungen

    Einem Team internationaler Wissenschaftler unter der Leitung von Francesca Moresco (Center for Advancing Electronics Dresden - cfaed der TU Dresden) und Diego Peña Gil (Center for Research in Biological Chemistry and Molecular Materials - CiQUS an der Universität Santiago de Compostela) ist ... mehr

    Pilz als Untermieter produziert Wirkstoff einer Heilpflanze

    Die Tataren-Aster wird in der traditionellen chinesischen Medizin wegen des enthaltenen Astins als Heilpflanze genutzt; dem Stoff werden auch in der Krebsforschung vielversprechende Eigenschaften zugeschrieben. Doch die Astine produziert die Pflanze nicht selbst, wie lange angenommen wurde, ... mehr

  • Autoren

    Dr. Torsten Tonn

    Torsten Tonn ist Professor für Transfusionsmedizin an der Medizinischen Fakultät Carl Gustav Carus, Technische Universität Dresden. Er ist ebenfalls Geschäftsführer des DRKBlutspendedienstes Nord-Ost. Vor dieser Stellung leitete er den Bereich für Zell- und Gentherapie des Instituts für Tra ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.