q&more
Meine Merkliste
my.chemie.de  
Login  

News

Echtzeitbeobachtung von enzymatischen Prozessen an der DNA

Einblicke in die molekularen Vorgänge bei der Erkennung von DNA-Strangbrüchen

Modified from Krüger et al., “Real-time monitoring of PARP1-dependent PARylation by ATR-FTIR-spectroscopy”, Nature Communications, 1 May 2020. DOI: 10.1038/s41467-020-15858-w.

Gezeigt sind Infrarotspektren zu verschiedenen Zeitpunkten (0-79 min) nach Start der Poly(ADP-Ribosyl)ierungsreaktion durch Zugabe des PARP1 Substrats NAD+. Erkennbar ist die dynamische Bildung des Biopolymers Poly(ADP-Ribose) (Absorptionsbanden bei 1236 cm-1 und 1074 cm-1) und die Ablösung der PARP1 vom DNA Strangbruch (Absorptionsbanden bei 1645 cm-1 und 1548 cm-1).

05.05.2020: DNA-Strangbrüche können zur Entstehung von Krebs und beschleunigten Alterungsprozessen beitragen. Konstanzer Wissenschaftler aus den Fachbereichen Biologie und Chemie konnten nun mittels Infrarotspektroskopie in Echtzeit beobachten, welche molekularen Vorgänge bei der Erkennung von DNA-Strangbrüchen ablaufen.

DNA-Schäden im Allgemeinen und DNA-Strangbrüche im Speziellen entstehen tagtäglich in allen Zellen des menschlichen Körpers. Dies geschieht aufgrund von inneren Einflüssen wie freien Radikalen, die während Entzündungsprozessen und der Zellatmung entstehen können, und durch äußere Einflüsse, wie kosmische Hintergrundstrahlung oder auch Röntgenstrahlen im Zuge medizinisch-diagnostischer Maßnahmen. DNA-Strangbrüche können zum Zelltod oder zu Mutationen führen und so langfristig zur Krebsentstehung oder einem beschleunigten Alterungsprozess beitragen.

DNA-Reparatur mittels PARP1

Zellen besitzen molekulare Werkzeuge, um solche DNA-Strangbrüche sehr effizient zu reparieren. Eines davon ist das Enzym Poly(ADP-Ribose) Polymerase 1 (PARP1). Bei diesem Reparaturprozess bindet – als eine der ersten Reaktionen der Zelle auf eine DNA-Schädigung – PARP1 an den Strangbruch und wird dadurch (katalytisch) aktiviert. Mit Hilfe des Substrats Nicotinamid-Adenin-Dinukleotid (NAD+) produziert die PARP1 daraufhin Poly(ADP-Ribose) (PAR), welche ein kettenartiges Biopolymer darstellt. Dieses dient als Signalübermittler in der Zelle und koordiniert die weitere DNA-Schadensantwort. Im weiteren Verlauf des Prozesses löst sich die PARP1 wieder von der Schadensstelle ab und macht so den Weg für nachfolgende Schritte der DNA-Reparatur frei. Dieser Prozess ist insbesondere auch von medizinischer Bedeutung, da pharmakologische Inhibitoren der PARP1 seit kurzem in der Krebstherapie zur Anwendung kommen.

Wissenschaftler der Universität Konstanz (Arbeitsgruppen Prof. Dr. Aswin Mangerich/Prof. Dr. Alexander Bürkle, Fachbereich Biologie, und Arbeitsgruppe Prof. Dr. Karin Hauser, Fachbereich Chemie) konnten nun die biochemischen Vorgänge, die an einem DNA-Strangbruch unter Beteiligung der PARP1 ablaufen, im Detail sichtbar machen. Sie verwendeten dabei eine spezielle Methode der Infrarotspektroskopie (ATR-FTIR), die auch schon in einer vorherigen, kürzlich publizierten Studie zum Wechselspiel des Tumor-Suppressor-Proteins p53 mit DNA und PAR erfolgreich zum Einsatz kam.

Echtzeitbeobachtungen mittels Infrarotspektroskopie

„Das Besondere an unserer neuen Studie ist, dass wir nun die molekularen Vorgänge, welche die PARP1 an DNA-Strangbrüchen durchläuft, in Echtzeit untersuchen können. Dadurch konnten wir dynamische Veränderungen in der Proteinstruktur aufdecken und so weitere vertiefende Einblicke in die zugrundeliegenden Mechanismen gewinnen“, so Dr. Annika Krüger, die das Projekt im Rahmen ihrer inzwischen erfolgreich abgeschlossenen Doktorarbeit bearbeitet hat. Krüger wurde während ihrer Doktorarbeit durch die Graduiertenschule Chemische Biologie, das Zukunftskolleg der Universität Konstanz sowie den Konstanzer Sonderforschungsbereich 969 „Chemical and Biological Principles of Cellular Proteostasis“ gefördert und forscht mittlerweile am renommierten Karolinska-Institut in Stockholm, Schweden.

Prinzipiell können mit dieser spektroskopischen Methode auch andere enzymatische Prozesse, die an der DNA ablaufen, im Detail und mit molekularer Auflösung untersucht werden. Dies kann langfristig zu einem besseren Verständnis von Mechanismen der Krebsentstehung und Alterung sowie zur Wirkungsweise von Krebsmedikamenten beitragen.

Originalveröffentlichung:
A. Krüger, A. Bürkle, K. Hauser and A. Mangerich; "Real-time monitoring of PARP1-dependent PARylation by ATR-FTIR-spectroscopy"; Nature Communications, 1. Mai 2020.

Fakten, Hintergründe, Dossiers

  • DNA-Strangbrüche
  • Krebs
  • Zellalterung
  • DNA-Reparatur
  • ATR-FTIR-Spektoskopie

Mehr über Uni Konstanz

  • News

    Effektivere Screening-Methode verbessert Identifikation von Wirkstoffen gegen Viren

    Vor allem bei der Suche nach Medikamenten gegen Viren sind aussagekräftige Methoden gefragt, mit denen Wirkstoffe identifiziert werden können. Sehr aktuell derzeit ist die Suche nach antiviralen Wirkstoffen gegen Viren wie SARS-CoV-2 und anderen Organismen mit ähnlichen Proteasen. Wissensch ... mehr

    Weder flüssig noch fest

    Ein interdisziplinäres Forschungsteam der Universität Konstanz entdeckt einen neuen Aggregatzustand, flüssiges Glas, mit bisher unbekannten Strukturelementen – neue Erkenntnisse über die Eigenschaften von Glas und seine Übergänge. Obwohl Glas ein allgegenwärtiges Material ist, das wir tägli ... mehr

    Trickreiche Erreger

    Spezialisierte Erreger halten sich nicht nur an der Oberfläche der menschlichen Schleimhaut fest. Wie in der Arbeitsgruppe für Zellbiologie der Universität Konstanz nun herausgefunden wurde, nutzen sie auch das Gas Stickstoffmonooxid (NO), um mit ihrem Wirt auf kurze Distanz zu kommuniziere ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.