q&more
Meine Merkliste
my.chemie.de  
Login  

News

Künstliche Zuckerstangen blockieren Viren

Synthetische Glykomimetika koppeln an die Bindestellen der Viren, mit denen diese normalerweise an Zucker auf der Zelloberfläche andocken

Heinrich-Heine-Universität Düsseldorf

Die künstlich hergestellten Glykomimetika (grün) koppeln an die Bindestellen der Viren, mit denen diese normalerweise an Zucker (blau) auf der Zelloberfläche andocken.

22.04.2020: Synthetisch erzeugte Molekülketten, die verschiedene Zucker enthalten, können Viren effektiv behindern. In wieweit solche Moleküle als antivirale Wirkstoffe in Frage kommen, erläuterte ein Forschungsteam der Heinrich-Heine-Universität Düsseldorf (HHU) und der Westfälischen Wilhelms-Universität Münster (WWU) in der Fachzeitschrift Journal of the American Chemical Society.

Viren begleiten den Menschen ein Leben lang, sie lösen vielfältige Erkrankungen aus; die aktuelle Corona-Pandemie ist nur ein Beispiel dafür. Eine Impfung gewährt wirkungsvollen Schutz vor einer Viruserkrankung, allerdings gibt es nur gegen wenige Viren Impfstoffe. Deshalb müssen antivirale Wirkstoffe gefunden werden, die eine Virusinfektion verhindern oder bekämpfen können.

Eine erfolgreiche Strategie dabei: durch spezielle Moleküle virale Eiweißstoffe blockieren, mit deren Hilfe das Virus ansonsten an die menschliche Zelle andockt. Wenn ein Virus sich erst auf der Zelloberfläche festgesetzt hat, kann es sein Erbgut in die Zelle einschleusen und diese für seine Zwecke umfunktionieren. Viele antivirale Mittel verlieren allerdings im Laufe der Zeit ihre Wirkung, da Viren sehr schnell mutieren und sich so oft an die Abwehr anpassen können.

Ein Forschungsteam um die HHU-Professorin Dr. Laura Hartmann vom Lehrstuhl Makromolekulare Chemie und den münsterschen Professor Dr. Mario Schelhaas vom Institut für Zelluläre Virologie verfolgten in Zusammenarbeit mit Prof. Dr. Nicole Snyder vom Davidson College in North Carolina / USA den Ansatz, den ersten Kontakt des Virus mit der Zelle zu unterbinden, so dass die Infektionskette nicht starten kann.

Viren binden häufig mit speziellen Proteinen an Zuckermoleküle auf der Zelloberfläche. Zu diesen Zuckern gehören unter anderem die langkettigen, stark negativ geladenen Glykosaminoglykane (GAG). Zu ihnen zählt auch das Heparansulfat. Es war bereits bekannt, dass GAG Virusinfektionen reduzieren können, wenn sie von außen zugeführt werden. Allerdings haben natürliche Zuckergemische Nebenwirkungen, die auf ihre eigene biologische Funktion im Körper oder auf Verunreinigungen zurückzuführen sind.

Das Forschungsteam nutzt nun die Vorteile der GAG und schließt gleichzeitig ihre Nachteile aus. Die Idee: Man nutzt unter kontrollierten Bedingungen an der HHU hergestellte künstliche Moleküle, sogenannte Glykomimetika. Sie bestehen aus einem langen synthetischen Gerüst, an dessen Seitenarme kleine Zuckermoleküle angebaut sind. In Düsseldorf wurden sowohl kürzere Ketten mit bis zu zehn seitlichen Zuckern hergestellt (sogenannte Oligomere), als auch lange Ketten mit bis zu 80 Zuckern, die Glykopolymere.
Um den GAGs möglichst zu ähneln, koppelten die Chemiker Sulfatgruppen an die Zucker.

Anschließend testete Prof. Schelhaas an der Universität Münster an Zellkulturen die antiviralen Eigenschaften dieser verschieden langen „Zuckerstangen“. Zuerst setzte seine Arbeitsgruppe sie gegen humane Papillomviren ein, die unter anderem Gebärmutterhalskrebs auslösen können. Es zeigte sich, dass sowohl die kurz- als auch die langkettigen synthetischen Moleküle antiviral wirken, allerdings auf zwei unterschiedliche Arten. Während die wirksameren, langkettigen Moleküle das Andocken an Zellen wie erwartet behinderte, zeigten die kurzkettigen Moleküle eine antivirale Aktivität über das Andocken hinaus, so dass diese im Körper vermutlich länger aktiv sind.

Dazu Prof. Schelhaas: „Höchstwahrscheinlich besetzen die langkettigen Moleküle die Stellen am Virus, mittels derer es an die Zelle bindet und blockieren sie damit. Die kurzkettigen Moleküle können diese Stellen nicht blockieren. Wir wollen im Folgenden die Hypothese untersuchen, ob diese Moleküle die Umlagerung von Eiweißen im Virus behindern, so dass die Viren ihr Erbgut nicht in die Zelle einschleusen können.“

Die Wirksamkeit bestätigte sich für die Papillomviren auch in einem Tiermodell. Zusätzlich waren die Wirkstoffe gegen vier weitere Viren aktiv – inklusive Herpesviren, die Lippenbläschen und Gehirnhautentzündung hervorrufen können, und Influenzaviren, die Grippe auslösen. Prof. Hartmann: „Damit sind die Glykomimetika hoffnungsvolle Wirkstoffmoleküle, die möglicherweise gegen eine große Zahl unterschiedlicher Viren eingesetzt werden können. In einem folgenden Schritt wird die genaue Wirkungsweise der Glykomimetika untersucht und wie sie weiter optimiert werden können.“

Prof. Schelhaas ergänzt: „Ein Gegenstand weiterer Forschungen wird sein, wie schnell sich Viren auf diese neue Wirkstoffklasse einstellen können. Gerade bei den kurzkettigen Molekülen besteht die Hoffnung, dass die Viren es schwerer haben, Gegenmaßnahmen zu finden.“

Originalveröffentlichung:
Laura Soria-Martinez, Sebastian Bauer, Markus Giesler, Sonja Schelhaas, Jennifer Materlik, Kevin Janus, Patrick Pierzyna, Miriam Becker, Nicole L. Snyder, Laura Hartmann and Mario Schelhaas; "Prophylactic Antiviral Activity of Sulfated Glycomimetic Oligomers and Polymers"; J. Am. Chem. Soc.; 2020, 142, 11, 5252-5265

Fakten, Hintergründe, Dossiers

  • Viren
  • Virusinfektionen
  • antivirale Medikamente
  • künstliche Moleküle

Mehr über Universität Düsseldorf

  • News

    Parkinsonforschung: Bindeprotein verhindert Fibrillenwachstum

    Verschiedene neurodegenerative Erkrankungen wie Parkinson hängen eng mit der Verklumpung eines bestimmten Proteins, des α-Synuclein, zusammen. Ein internationales Kooperationsprojekt unter Beteiligung der Heinrich-Heine-Universität Düsseldorf (HHU), des Forschungszentrums Jülich (FZJ) und d ... mehr

    Biologisches Gefahrenpotenzial von Nanopartikeln untersucht

    Kohlenstoff-Nanopartikel sind ein vielversprechendes Werkzeug für biomedizinische Anwendungen, etwa für den gezielten Wirkstofftransport in Zellen. Ein Team aus Physik, Medizin und Chemie der Heinrich-Heine-Universität Düsseldorf (HHU) hat nun untersucht, ob diese Partikel für den Organismu ... mehr

    Zusammenlagerung von Proteinen nicht nur bei Alzheimer und Parkinson relevant

    Bei neurodegenerativen Erkrankungen spielen Amyloid-Fibrillen eine gefährliche Rolle. Wissenschaftler der Heinrich-Heine-Universität Düsseldorf (HHU) und des Forschungszentrums Jülich konnten nun mit Hilfe der Kryoelektronenmikroskopie (Kryo-EM) erstmals die räumliche Struktur der Fibrillen ... mehr

  • q&more Artikel

    Überraschend einfache Moleküle als potenzielle OLED-Emitter?

    Organische Leuchtdioden (OLEDs) erobern derzeit den Markt für Displays von Smartphones und Fernsehgeräten. Sie besitzen aber auch ein großes Potenzial als Leuchtmittel. Allerdings erreichen die bislang verfügbaren Emitter für den blauen Teil des sichtbaren Spektrums nicht die Effizienz und ... mehr

  • Autoren

    Kristoffer Thom

    Kristoffer Thom, Jahrgang 1993, studierte Chemie an der Heinrich-Heine-Universität Düsseldorf und widmete sich während seiner Bachelorarbeit in der Gruppe von Rainer Weinkauf der Untersuchung von Peptiden mittels Massenspektrometrie. Für seine Masterarbeit wechselte er zur Arbeitsgruppe von ... mehr

    Prof. Dr. Peter Gilch

    Peter Gilch, Jahrgang 1970, studierte Chemie an der Universität Konstanz bevor er 1999 an der Technischen Universität München promovierte. Anschließend habilitierte er sich 2004 am Lehrstuhl für Biomolekulare Optik der Ludwig-Maximilians-Universität München. Seit 2009 hat er eine Professur ... mehr

Mehr über WWU Münster

  • News

    Enzyme als Doppelagenten: Neuer Mechanismus bei der Proteinmodifikation entdeckt

    Proteine nehmen in Pflanzen eine wichtige Funktion bei der Fotosynthese ein. Um gezielt arbeiten zu können, verändern sie nach der Herstellung in der Zelle ihre chemische Form. Die Rolle des „Antreibers“ spielen dabei Enzyme. Forscher haben jetzt Enzyme identifiziert, die auf doppelte Weise ... mehr

    Nanotechnologen erstellen fotografischen Film eines molekularen Schalters

    Sie sind die molekularen Gegenstücke zu elektrischen Schaltern und spielen für viele Prozesse in der Natur eine wichtige Rolle: molekulare Schalter. Solche Moleküle können auf umkehrbare Weise zwei oder mehr Zustände einnehmen und so molekulare Prozesse steuern. In lebenden Organismen spiel ... mehr

    Enzym setzt durch Licht neuartige, bisher unbekannte Reaktion in Gang

    In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht kat ... mehr

  • q&more Artikel

    Alternativen zum Tierversuch?

    Die Aufklärung des Metabolismus potenzieller neuer Wirkstoffe ist eine der großen Herausforderungen in der pharmazeutischen Forschung und Entwicklung. Sie ist in der Regel sehr zeitaufwändig und kostenintensiv. Klassische Ansätze basieren dabei im Wesentlichen auf In-vivo-Experimenten mit L ... mehr

    Ausdrucksstark

    Biologische Moleküle an Oberflächen zu koppeln und in dieser Form für Messverfahren, zur Analytik oder in Produktionsprozessen einzusetzen, ist ein innovativer Ansatz, der in industriellen Anwendungen zunehmend Bedeutung gewinnt. In gängigen Verfahren werden Oberflächen und biologische Mole ... mehr

  • Autoren

    Dr. Martin Vogel

    Martin Vogel, geb. 1973, hat Chemie studiert und an der Universität Münster in analytischer Chemie promoviert. Nach seiner Promotion ging er für einige Jahre an die Universität Twente in Enschede (Niederlande). Seit 2006 ist er wissenschaftlicher Mitarbeiter am Institut für Anorganische und ... mehr

    Prof. Dr. Joachim Jose

    Joachim Jose, geb. 1961, studierte Biologie an der Universität Saarbrücken, wo er promovierte. Die Habilitation erfolgte am Institut für Pharma­zeutische und Medizinische Chemie der Universität des Saarlandes. Von 2004 bis 2011 war Professor für Bioanalytik (C3) an der Heinrich-Heine-Univer ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.