22.04.2020 - Heinrich-Heine-Universität Düsseldorf

Künstliche Zuckerstangen blockieren Viren

Synthetische Glykomimetika koppeln an die Bindestellen der Viren, mit denen diese normalerweise an Zucker auf der Zelloberfläche andocken

Synthetisch erzeugte Molekülketten, die verschiedene Zucker enthalten, können Viren effektiv behindern. In wieweit solche Moleküle als antivirale Wirkstoffe in Frage kommen, erläuterte ein Forschungsteam der Heinrich-Heine-Universität Düsseldorf (HHU) und der Westfälischen Wilhelms-Universität Münster (WWU) in der Fachzeitschrift Journal of the American Chemical Society.

Viren begleiten den Menschen ein Leben lang, sie lösen vielfältige Erkrankungen aus; die aktuelle Corona-Pandemie ist nur ein Beispiel dafür. Eine Impfung gewährt wirkungsvollen Schutz vor einer Viruserkrankung, allerdings gibt es nur gegen wenige Viren Impfstoffe. Deshalb müssen antivirale Wirkstoffe gefunden werden, die eine Virusinfektion verhindern oder bekämpfen können.

Eine erfolgreiche Strategie dabei: durch spezielle Moleküle virale Eiweißstoffe blockieren, mit deren Hilfe das Virus ansonsten an die menschliche Zelle andockt. Wenn ein Virus sich erst auf der Zelloberfläche festgesetzt hat, kann es sein Erbgut in die Zelle einschleusen und diese für seine Zwecke umfunktionieren. Viele antivirale Mittel verlieren allerdings im Laufe der Zeit ihre Wirkung, da Viren sehr schnell mutieren und sich so oft an die Abwehr anpassen können.

Ein Forschungsteam um die HHU-Professorin Dr. Laura Hartmann vom Lehrstuhl Makromolekulare Chemie und den münsterschen Professor Dr. Mario Schelhaas vom Institut für Zelluläre Virologie verfolgten in Zusammenarbeit mit Prof. Dr. Nicole Snyder vom Davidson College in North Carolina / USA den Ansatz, den ersten Kontakt des Virus mit der Zelle zu unterbinden, so dass die Infektionskette nicht starten kann.

Viren binden häufig mit speziellen Proteinen an Zuckermoleküle auf der Zelloberfläche. Zu diesen Zuckern gehören unter anderem die langkettigen, stark negativ geladenen Glykosaminoglykane (GAG). Zu ihnen zählt auch das Heparansulfat. Es war bereits bekannt, dass GAG Virusinfektionen reduzieren können, wenn sie von außen zugeführt werden. Allerdings haben natürliche Zuckergemische Nebenwirkungen, die auf ihre eigene biologische Funktion im Körper oder auf Verunreinigungen zurückzuführen sind.

Das Forschungsteam nutzt nun die Vorteile der GAG und schließt gleichzeitig ihre Nachteile aus. Die Idee: Man nutzt unter kontrollierten Bedingungen an der HHU hergestellte künstliche Moleküle, sogenannte Glykomimetika. Sie bestehen aus einem langen synthetischen Gerüst, an dessen Seitenarme kleine Zuckermoleküle angebaut sind. In Düsseldorf wurden sowohl kürzere Ketten mit bis zu zehn seitlichen Zuckern hergestellt (sogenannte Oligomere), als auch lange Ketten mit bis zu 80 Zuckern, die Glykopolymere.
Um den GAGs möglichst zu ähneln, koppelten die Chemiker Sulfatgruppen an die Zucker.

Anschließend testete Prof. Schelhaas an der Universität Münster an Zellkulturen die antiviralen Eigenschaften dieser verschieden langen „Zuckerstangen“. Zuerst setzte seine Arbeitsgruppe sie gegen humane Papillomviren ein, die unter anderem Gebärmutterhalskrebs auslösen können. Es zeigte sich, dass sowohl die kurz- als auch die langkettigen synthetischen Moleküle antiviral wirken, allerdings auf zwei unterschiedliche Arten. Während die wirksameren, langkettigen Moleküle das Andocken an Zellen wie erwartet behinderte, zeigten die kurzkettigen Moleküle eine antivirale Aktivität über das Andocken hinaus, so dass diese im Körper vermutlich länger aktiv sind.

Dazu Prof. Schelhaas: „Höchstwahrscheinlich besetzen die langkettigen Moleküle die Stellen am Virus, mittels derer es an die Zelle bindet und blockieren sie damit. Die kurzkettigen Moleküle können diese Stellen nicht blockieren. Wir wollen im Folgenden die Hypothese untersuchen, ob diese Moleküle die Umlagerung von Eiweißen im Virus behindern, so dass die Viren ihr Erbgut nicht in die Zelle einschleusen können.“

Die Wirksamkeit bestätigte sich für die Papillomviren auch in einem Tiermodell. Zusätzlich waren die Wirkstoffe gegen vier weitere Viren aktiv – inklusive Herpesviren, die Lippenbläschen und Gehirnhautentzündung hervorrufen können, und Influenzaviren, die Grippe auslösen. Prof. Hartmann: „Damit sind die Glykomimetika hoffnungsvolle Wirkstoffmoleküle, die möglicherweise gegen eine große Zahl unterschiedlicher Viren eingesetzt werden können. In einem folgenden Schritt wird die genaue Wirkungsweise der Glykomimetika untersucht und wie sie weiter optimiert werden können.“

Prof. Schelhaas ergänzt: „Ein Gegenstand weiterer Forschungen wird sein, wie schnell sich Viren auf diese neue Wirkstoffklasse einstellen können. Gerade bei den kurzkettigen Molekülen besteht die Hoffnung, dass die Viren es schwerer haben, Gegenmaßnahmen zu finden.“

Fakten, Hintergründe, Dossiers

  • Viren
  • Virusinfektionen
  • antivirale Medikamente
  • künstliche Moleküle

Mehr über Universität Düsseldorf

  • News

    DNAzyme – wie aktive DNA-Moleküle mit therapeutischem Potenzial funktionieren

    DNAzyme sind hochpräzise Biokatalysatoren, die gezielt ungewollte RNA-Moleküle zerstören. Für den medizinischen Einsatz gibt es aber noch eine große Hürde. Ein Forschungsteam der Heinrich-Heine-Universität Düsseldorf (HHU) hat zusammen mit dem Forschungszentrum Jülich (FZJ) und der Universi ... mehr

    „Unsterblichkeits-Protein“ befeuert die Kraftwerke der Zelle

    Die Alternsforscherin Prof. Judith Haendeler aus der Medizinischen Fakultät und der Molekularbiologe Prof. Joachim Altschmied aus der Biologie mit ihren Teams haben im Herz-Kreislauf-System erstmals gezeigt, dass Telomerase Reverse Transkriptase (TERT) in den Mitochondrien, den Kraftwerken ... mehr

    Wie resistente Keime Gift auf molekularer Ebene transportieren

    Um der zunehmenden Bedrohung durch multiresistente Keime zu begegnen, ist das Verständnis der Resistenzmechanismen zentral. Eine wichtige Rolle dabei spielen Transportproteine. Ein deutsch-britisches Forschungsteam unter Leitung der Heinrich-Heine-Universität Düsseldorf (HHU) beschreibt nun ... mehr

  • q&more Artikel

    Überraschend einfache Moleküle als potenzielle OLED-Emitter?

    Organische Leuchtdioden (OLEDs) erobern derzeit den Markt für Displays von Smartphones und Fernsehgeräten. Sie besitzen aber auch ein großes Potenzial als Leuchtmittel. Allerdings erreichen die bislang verfügbaren Emitter für den blauen Teil des sichtbaren Spektrums nicht die Effizienz und ... mehr

  • Autoren

    Kristoffer Thom

    Kristoffer Thom, Jahrgang 1993, studierte Chemie an der Heinrich-Heine-Universität Düsseldorf und widmete sich während seiner Bachelorarbeit in der Gruppe von Rainer Weinkauf der Untersuchung von Peptiden mittels Massenspektrometrie. Für seine Masterarbeit wechselte er zur Arbeitsgruppe von ... mehr

    Prof. Dr. Peter Gilch

    Peter Gilch, Jahrgang 1970, studierte Chemie an der Universität Konstanz bevor er 1999 an der Technischen Universität München promovierte. Anschließend habilitierte er sich 2004 am Lehrstuhl für Biomolekulare Optik der Ludwig-Maximilians-Universität München. Seit 2009 hat er eine Professur ... mehr

Mehr über WWU Münster

  • News

    Mehr Daten in der Chemie

    Unzählige chemische Experimente sind in Datenbanken zugänglich. Dennoch sind diese Daten nicht gut genug, um mithilfe von künstlicher Intelligenz (KI) und maschinellem Lernen bei neuen Synthesen Produktausbeuten vorherzusagen, hat ein Forschungsteam herausgefunden. Wie das Team in der Zeits ... mehr

    Krisenhilfe für gestresste Zellen

    Mitochondrien bieten einem Forschungsteam der Westfälischen Wilhelms-Universität (WWU) Münster zufolge unerwartete Krisenhilfe für Zellen, indem sie schädliche Stoffe „veratmen“. Eine aktuelle Studie aus dem Institut für Biologie und Biotechnologie der Pflanzen (IBBP) zeigt dreierlei: dass ... mehr

    "Hand in Hand in Hand": Drei Katalysatoren lösen chemisches Problem

    Für die organische Synthese, also für die Herstellung von Kohlenstoff-Verbindungen, ist die Entwicklung von Syntheseverfahren von Bedeutung, durch die sich das gewünschte Produkt in guter Ausbeute gewinnen lässt. Gleichzeitig sollen die Verfahren nachhaltig sein: Sie sollen beispielsweise u ... mehr

  • q&more Artikel

    Löwenzahn als neue Rohstoffquelle für Naturkautschuk

    Mehr als 12.500 Pflanzen produzieren Latex, einen farblosen bis weißen Milchsaft, der unter anderem Naturkautschuk enthält. mehr

  • Autoren

    Prof. Dr. Dirk Prüfer

    Dirk Prüfer, Jahrgang 1963, studierte Biologie an der Universität zu Köln und promovierte am Max-Planck-Institut für Pflanzenzüchtung. Seine Habilitation legte er im Jahr 2004 an der Justus-Liebig-Universität Gießen ab. Seit 2004 ist er Professor für molekulare Pflanzenbiotechnologie am Ins ... mehr

    Prof. Dr. Joachim Jose

    Joachim Jose, geb. 1961, studierte Biologie an der Universität Saarbrücken, wo er promovierte. Die Habilitation erfolgte am Institut für Pharma­zeutische und Medizinische Chemie der Universität des Saarlandes. Von 2004 bis 2011 war Professor für Bioanalytik (C3) an der Heinrich-Heine-Univer ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: