q&more
Meine Merkliste
my.chemie.de  
Login  

News

Der Code der Fette

Neue chemische Werkzeuge können die Konzentration von Lipiden in lebenden Zellen steuern

Schumacher et al. / MPI-CBG

Molekulare Sonden (in blau) für die Analyse von Lipidbotenstoffen.

21.04.2020: Lipide, oder Fette, haben in unserem Körper viele Funktionen: So bilden sie Membranbarrieren, speichern Energie oder sind als Botenstoffe unterwegs und regulieren so zum Beispiel Zellwachstum und Hormonausschüttung. Viele von ihnen sind auch Biomarker für schwere Krankheiten. Bisher ist es jedoch sehr schwierig, die Funktionen dieser Moleküle in lebenden Zellen zu analysieren. Forscher des Max-Planck-Instituts für molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden und des Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin haben nun chemische Werkzeuge entwickelt, die durch Licht aktiviert werden und mit deren Hilfe die Lipid-Konzentration in lebenden Zellen beeinflusst werden kann. Mit diesem Ansatz könnten Ärzte gemeinsam mit Biochemikern herausfinden, was Moleküle in einer Zelle tatsächlich tun. Die Studie wurde in der Fachzeitschrift PNAS veröffentlicht.

In jeder Zelle werden tausende verschiedener Lipide (Fette) gebildet. Allerdings gibt es bisher wenig Wissen darüber, wie diese chemische Lipid-Vielfalt zur Übertragung von Botschaften in der Zelle beiträgt, mit anderen Worten, der Lipid-Code der Zelle ist noch nicht bekannt. Das liegt vor allem am Mangel an Methoden zur quantitativen Untersuchung der Lipidfunktion in lebenden Zellen. Ein Verständnis über das Wirken von Lipiden ist sehr wichtig, da sie die Funktion von Proteinen in der ganzen Zelle kontrollieren und daran beteiligt sind wichtige Stoffe durch die Zellmembran in die Zelle zu bringen. Das faszinierende an Lipiden, die als Boten-Moleküle fungieren ist, dass an der Innenseite der Zellmembran nur eine begrenzte Zahl von Lipidenklassen als Botenstoffe zu dienen, diese aber Botschaften von tausenden verschiedenen Rezeptoren-Proteinen bekommen. Wie diese vielen Botschaften aber trotzdem gut erkannt und weitergeleitet werden können, war bisher eine ungelöste Frage.

Die Forschungsgruppen um André Nadler am MPI-CBG und Alexander Walter am FMP haben in Zusammenarbeit mit der TU Dresden chemische Werkzeuge entwickelt, mit dem man die Konzentration von Lipiden in lebenden Zellen steuern kann. Aktiviert wird dieses Werkzeug durch Licht. Milena Schuhmacher, die Erstautorin der Studie, erklärt: „Lipide sind eigentlich keine einzelnen molekularen Strukturen, sondern unterscheiden sich in winzigen chemischen Details, zum Beispiel haben einige längere Fettsäureketten und manche etwas kürzere. Wir konnten mithilfe ausgeklügelter Mikroskopie in lebenden Zellen und mathematischen Modellierungsansätzen zeigen, dass die Zelle diese winzigen Veränderungen durch spezielle Effektor-Proteinen tatsächlich erkennen und so möglicherweise zur Übertragung von Informationen nutzen können. Hierbei war es wichtig, dass wir ganz genau kontrollieren konnten, wieviel von jedem einzelnen Lipid vorhanden war.“ André Nadler, der die Studie betreute, ergänzt: „Diese Ergebnisse deuten auf die Existenz eines Lipidcodes hin, der von Zellen genutzt wird, um Information, die auf der Außenseite der Zelle detektiert werden, auf der Innenseite der Zelle wieder neu zu codieren.“

Die Ergebnisse der Studie könnten es Membran-Biophysikern und Lipid-Biochemikern ermöglichen, ihre Ergebnisse mit quantitativen Daten lebender Zellen zu überprüfen. André Nadler weist darauf hin: „Auch Kliniker könnten von unserer neu entwickelten Methode profitieren. Bei Erkrankungen, wie Diabetes und Bluthochdruck, hat man mehr Lipide, die als Biomarker fungieren, im Blut. Diese kann man mit einem Lipidprofil veranschaulichen. Mithilfe unserer Methode, könnten die Ärzte nun genau sehen, was die Lipide genau im Körper machen. Das war bisher nicht möglich.“

Originalveröffentlichung:
Milena Schuhmacher, Andreas T. Grasskamp, Pavel Barahtjan, Nicolai Wagner, Benoit Lombardot, Jan S. Schuhmacher, Pia Sala, Annett Lohmann, Ian Henry, Andrej Shevchenko, Ünal Coskun, Alexander M. Walter, André Nadler “Live cell lipid biochemistry reveals a role of diacylglycerol side chain composition for cellular lipid dynamics and protein affinities” PNAS, 25. März 2020

Fakten, Hintergründe, Dossiers

Mehr über MPI für molekulare Zellbiologie und Genetik

  • News

    Spermien auf dem richtigen Weg

    Ein wesentlicher Bestandteil aller eukaryotischen Zellen ist das Zytoskelett. Mikrotubuli, winzige Röhrchen, die aus einem Protein namens Tubulin bestehen, sind Teil dieses Zellskeletts. Zilien und Geißeln, antennenartige Strukturen, die aus den meisten Zellen unseres Körpers herausragen, e ... mehr

    Lass uns eine Zelle bauen

    Zellen sind die Grundbausteine allen Lebens. Ihr Inneres bietet eine ideale Umgebung, in der die elementaren Moleküle des Lebens interagieren können, um chemische Reaktionen stattfinden zu lassen und somit Leben ermöglichen. Die biologische Zelle ist jedoch sehr komplex, sodass es schwierig ... mehr

    Wie Zellen unsere Organe dichthalten

    Unsere Organe sind spezialisierte Kompartimente mit jeweils eigenem Milieu und Funktion. Um unsere Organe nach außen abzudichten, müssen die Zellen im Epithelgewebe eine Barriere bilden, die sogar für Moleküle dicht ist. Diese Barriere wird durch einen Proteinkomplex gebildet, der alle Zell ... mehr

Mehr über Max-Planck-Gesellschaft

  • News

    Neue Mikroskopie-Methode löst Fluoreszenzmoleküle nanometergenau auf

    Wissenschaftler um Stefan Hell vom Göttinger Max-Planck-Institut (MPI) für biophysikalische Chemie und dem Heidelberger MPI für medizinische Forschung haben eine neue Lichtmikroskopie-Methode entwickelt, MINSTED genannt. Sie trennt fluoreszenzmarkierte Details mit molekularer Schärfe. Für N ... mehr

    Zellen sprechen sich bei ihrer Entwicklung ab

    Während der Entwicklung eines Organismus müssen sich die Zellen in einem definierten Zeitplan spezialisieren und bestimmte Funktionen ausbilden: So entsteht aus einem Haufen Zellen strukturiertes Gewebe. Die Forschungsgruppe von Aneta Koseska (ehem. Max-Planck-Institut für molekulare Physio ... mehr

    Krebserregende Bakterien auf frischer Tat ertappt

    Escherichia coli-Bakterien sind ein integraler Bestandteil des menschlichen Darmmikrobioms. Einige Stämme produzieren jedoch ein Erbgut-schädigendes Genotoxin namens Colibactin, welches im Verdacht steht, Darmkrebs zu verursachen. Zwar wurde mittlerweile gezeigt, dass Colibactin zu hochspez ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.