08.04.2020 - Universität zu Köln

Reparatur statt Neubau: Beschädigte Zell-Kraftwerke haben eigenen “Werkstatt-Modus”

Molekularen Reparaturweg für zelluläre Energiegewinnung gefunden

Eine durch Schäden gestörte Energieversorgung der Zelle kann sich selbst vor Funktionseinbußen schützen und in einer Art Werkstatt-Modus reparieren. Das zeigt ein neues Paper von der Molekularbiologin Professorin Dr. Aleksandra Trifunovic und Dr. Karolina Szcepanowska, einer leitenden Wissenschaftlerin in ihrem Team, die am Exzellenzcluster für Alternsforschung CECAD der Universität zu Köln mitwirken.

Trifunovic arbeitet an sogenannten Mitochondrien, den Energie-Kraftwerken, die einer jeden Zelle innewohnen. Zu den Aufgaben von Mitochondrien gehören ganz grundlegende Prozesse wie die konstante Versorgung der Zelle mit Energie. Die Kraftwerksmaschine in den Mitochondrien besteht aus fünf Bauteilen, den so genannten Komplexen I – V. In ihnen wird schlussendlich die Nahrung, die wir essen, in nutzbare Energie umgewandelt. Ist die zelluläre Energieversorgung aufgrund von Störungen in Signalprozessen nicht mehr gewährleistet, zieht dies schwerwiegende Folgen für den gesamten Organismus und Krankheiten nach sich.

“In unserer jüngsten Arbeit haben wir einen Rettungsweg entdeckt, mit dessen Hilfe Zellen Störungen eines besonders empfindlichen Anteils des Komplex I reparieren können”, so Trifunovic. “Etwas zu reparieren ist dabei ein weitaus ressourcenschonenderer Selbsthilfe-Mechanismus im Vergleich zu dem Aufwand, den eine vollständige Zerstörung und ein Neuaufbau dieses gesamten Bauteils bedeuten würde.”

Der von Trifunovic identifizierte spezifische Rettungsweg wirke für die Zelle zudem wie ein Sicherheitsventil. Wird der Rettungsweg aktiv, schaltet sich das aus der Funktion geratene Bauteil ganz zügig in einen Shutdown-Modus und kommt “in die Werkstatt”. So verhindern die Zellen direkt, dass in der Kraftwerksmaschine schädliche reaktive Sauerstoffspezies produziert und abgegeben werden. Trifunovic: “Bislang ist nur sehr wenig darüber bekannt, wie diese Maschinerie gewartet und reguliert wird. Unsere Ergebnisse werfen Licht auf diesen Prozess und erlauben uns, weitere therapeutische Möglichkeiten zu erforschen.”

Für anschließende Fragen hat die Molekularbiologin Trifunovic bereits einen Anhaltspunkt. Neben der allgemeinen Neuheit des gesamten Mechanismus habe sie besonders erstaunt, dass es für den Organismus oftmals besser ist, einige Kraftwerksmaschinen-Bauteile trotz Schäden am Laufen zu halten und nicht alle geschädigten Bauteile gleichzeitig in den Reparatur-Modus zu stellen oder ganz abzubauen. Dabei spielen möglicherweise Funktionen auch von einzelnen Komponenten eine Rolle, die über die Energieversorgung hinausgehen. Wie weitreichend und vielseitig der jetzt entdeckte molekulare Reparaturpfad wirkt, möchte Trifunovic weiter erforschen, um sein volles Potenzial für mögliche Krankheitstherapien zu erkennen.

Trifunovic betonte, dass diese Forschung nicht ohne den Beitrag ihrer Kollegin Dr. Karolina Szczepanowska möglich gewesen wäre. Sie war eine treibende Kraft hinter der Projekt. Auch die Zusammenarbeit mit anderen Forschungsgruppen und Universitäten hat das Kölner Team entscheidend vorangebracht.

Fakten, Hintergründe, Dossiers

  • Zellen
  • Mitochondrien

Mehr über Uni Köln

  • News

    Große Bakterienpopulationen entwickeln stärkere Antibiotikaresistenz

    Wissenschaftler der Universität Wageningen und des Instituts für Biologische Physik der Universität zu Köln haben nachgewiesen, dass kleine und große Bakterienpopulationen im Prozess der Evolution qualitativ unterschiedliche Pfade beschreiten: Größere Populationen entwickeln stärkere und an ... mehr

    Tödliche Kombination: neuer direkter Auslöser für den Zelltod entdeckt

    Wissenschaftler um Professorin Ana J. Garcia-Saez am CECAD Exzellenzcluster für Alternsforschung der Universität zu Köln haben gezeigt, dass bei der Apoptose, dem programmierten Zelltod, ein direktes physisches Zusammenspiel der zwei Proteine BAX und DRP1 vorliegt. DRP1 kann durch die Bindu ... mehr

    Wissenschaftler:innen entdecken neue Regulatoren des Alternsprozesses

    Wissenschaftler:innen haben entdeckt, dass das Protein Ubiquitin für die Regulierung des Alterungsprozesses eine wichtige Rolle einnimmt. Bisher war bekannt, dass Ubiquitin zahlreiche Prozesse, wie zum Beispiel Signalweiterleitung und Stoffwechsel, steuert. Prof. Dr. David Vilchez und seine ... mehr

  • q&more Artikel

    Goldplasma macht unsichtbare Strukturen sichtbar

    Die Mikro-Computertomographie (μCT) ist in den letzten Jahren zu einer Standardmethode in vielen medizinischen, wissenschaftlichen und industriellen Bereichen geworden. Das bildgebende Verfahren ermöglicht die zerstörungsfreie, dreidimensionale Abbildung verschiedenster Strukturen. mehr

  • Autoren

    Peter T. Rühr

    Peter T. Rühr, Jahrgang 1988, studierte Biologie mit Schwerpunkt auf der Kopfmorphologie von Ur-Insekten am Zoologischen Forschungsmuseum Alexander Koenig und an der Rheinischen Friedrich-Wilhelms-Universität Bonn, wo er 2017 seinen Masterabschluss erhielt. Seit 2018 promoviert er an der Un ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: