q&more
Meine Merkliste
my.chemie.de  
Login  

News

Zuckerstrukturen auf Viren und Tumorzellen blockieren

Künstliches zuckerbindendes Protein könnte Zellwachstum bremsen

TUM-Chair of Biological Chemistry

Aktuelle Forschungsergebnisse des Labors von Prof. Skerra eröffnen den Weg zur Entwicklung neuartiger Bindeproteine für biologische Zuckerstrukturen, die sowohl bei Krebs- als auch bei Infektionserkrankungen eine große Rolle spielen. - Zu sehen ist hier ein zuckerartiger Ligand (gelb), der an die Borsäuregruppe (grün) in der Tasche des Bindeproteins (pink) bindet. (Bild: Lehrstuhl für Biologische Chemie)

19.03.2020: Bei einer Virusinfektion gelangen Viren in den Organismus und vermehren sich in den Körperzellen. Viren setzen sich oft gezielt auf die Zuckerstrukturen der Zellen ihres Wirts oder präsentieren ihrerseits charakteristische Zuckerstrukturen auf ihrer Oberfläche. Forscher der TUM haben ein neuartiges Proteinreagenz zur Erkennung biologischer Zuckerstrukturen entwickelt, das die Ausbreitung einer Erkrankung im Körper blockieren kann, wenn es an die Zuckerstrukturen einer Zelle oder eines Erregers andockt.

Das Labor von Arne Skerra, Professor für Biologische Chemie, an der Technischen Universität München (TUM) beschäftigt sich mit der Herstellung von künstlichen Bindeproteinen, die für therapeutische Zwecke einsetzbar sind. Aktuelle Forschungsergebnisse des Labors eröffnen nun den Weg zur Entwicklung neuartiger Bindeproteine für biologische Zuckerstrukturen, die sowohl bei Krebs- als auch bei Infektionserkrankungen eine große Rolle spielen.

Erkennung biologischer Zuckerstrukturen

„Die Erkennung von speziellen Zuckermolekülen, sogenannten Kohlenhydraten, ist bei vielen biologischen Prozessen von entscheidender Bedeutung“, erklärt Prof. Skerra. Damit der Körper erkennt, wohin welche Zellen gehören oder ob Zellen fremd sind, haben diese häufig einen Marker aus Zuckerketten, die an die Außenseite der Zellmembran oder an Membranproteine geknüpft sind. Auch Krankheitserreger verfügen über eigene Zuckerstrukturen oder können sich daran festsetzen.  

Proteine, die vielfältigen Funktionsträger aller Zellen, haben jedoch ganz allgemein eine geringe Affinität gegenüber Zuckern. Deren molekulare Erkennung ist also schwierig. Grund dafür: Wasser sieht den Zuckermolekülen ähnlich, so dass diese in der wässrigen Umgebung der Zellen quasi getarnt sind. Die Gruppe von Prof. Skerra machte sich auf die Suche nach einem künstlichen Bindeprotein mit einer chemischen Gruppierung, die die biologischen Zuckerstrukturen leichter erkennen lässt.

Borsäuregruppe als Aminosäure in Protein eingebaut

Aminosäuren sind die Bausteine der Proteine. Üblicherweise nutzt die Natur für die Vielfalt der Proteine nur 20 Aminosäuren. „Mit den Mitteln der Synthetischen Biologie nutzten wir zusätzlich eine künstliche Aminosäure“, berichtet Forscherin Carina A. Sommer.

„Uns ist es gelungen, eine Borsäuregruppe, die von sich aus Affinität zu Zuckermolekülen hat, gezielt in die Aminosäurekette eines Proteins einzubauen. Damit haben wir eine grundlegende neue Klasse von Bindeproteinen für Zuckermoleküle kreiert“, erklärt Sommer. Diese künstliche Zuckerbindefunktion ist natürlichen Bindeproteinen (so genannten Lektinen) in ihrer Stärke und auch den Möglichkeiten zur spezifischen Ausgestaltung überlegen.

„Die Zucker-Bindungsaktivität von Borsäure und ihren Derivaten ist seit fast einem Jahrhundert bekannt“, sagt Prof. Skerra. „Borsäure ist in der unbelebten Natur verbreitet und kaum toxisch, aber sie wird von Organismen bislang praktisch nicht genutzt.“

„Mit Hilfe der Röntgenstrukturanalyse haben wir es geschafft, die Kristallstruktur eines Modell-Komplexes dieses künstlichen Proteins aufzuklären und konnten damit unser biomolekulares Konzept bestätigen“, erklärt Wissenschaftler Dr. Andreas Eichinger.

Nächster Schritt: Entwicklung für konkrete medizinische Anwendungen

Nach etwa fünf Jahren Grundlagenforschung kann die Entwicklung aus Prof. Skerras Labor nun für konkrete medizinische Anwendungen genutzt werden. „Unsere Erkenntnisse sollten nicht nur die zukünftige Entwicklung von neuartigen Kohlenhydratliganden in der Biologischen Chemie unterstützen, sondern sie ebnen den Weg zu hochaffinen Wirkstoffen zur Ansteuerung oder Blockierung medizinisch relevanter Zuckerstrukturen auf Zelloberflächen“, fasst Prof. Skerra zusammen.

Das „Blockierungsmittel“ könnte beispielsweise bei Erkrankungen zum Einsatz kommen, bei denen starkes Zellwachstum oder das Andocken von Krankheitserregern an Zellen eine Rolle spielt, also in der Onkologie und der Virologie. Wenn es gelingt, die Zuckerbindungsfunktion zu blockieren und die Erkrankung zu bremsen, verschafft man damit dem Immunsystem mehr Zeit, die körpereigene Abwehr vorzubereiten.

Originalveröffentlichung:
Carina A. Sommer, Andreas Eichinger, and Arne Skerra; "A Tetrahedral Boronic Acid Diester Formed by an Unnatural Amino Acid in the Ligand Pocket of an Engineered Lipocalin"; ChemBioChem; 2020

Fakten, Hintergründe, Dossiers

  • Virusinfektionen
  • Viren
  • Bindeproteine
  • Krebs
  • Infektionskrankheiten

Mehr über TU München

  • News

    Gezielte Medikamentenlieferung in die Zelle

    Arzneimittel haben oft unerwünschte Nebenwirkungen. Ein Grund dafür ist, dass sie nicht nur kranke, sondern auch gesunde Zellen erreichen und auf diese wirken. Forscher der Technischen Universität München (TUM) haben in Zusammenarbeit mit der Königlichen Technischen Hochschule (KTH) in Stoc ... mehr

    Auf der Jagd nach neuen Behandlungsmöglichkeiten gegen das Coronavirus

    Aktuell beherrscht die Corona-Pandemie das gesamte gesellschaftliche Leben. Mit Hochdruck wird daran gearbeitet, den mehr als hunderttausend schwer erkrankten Menschen in den Krankenhäusern besser helfen zu können. Ein vielversprechender Ansatz, die aktuellen Behandlungsweisen zu erweitern, ... mehr

    Benzol in Kirschsaft: Wie kommt es dazu und wie kann man es vermeiden?

    Im Jahr 2013 fand die Stiftung Warentest in Getränken mit Kirschgeschmack gesundheitsgefährdendes Benzol. Doch wie war die Substanz in die Getränke gelangt? War Benzaldehyd als wesentliche Komponente des Kirscharomas die Quelle? Und wenn ja, wie ließe sich das Problem beheben? Eine neue Stu ... mehr

  • q&more Artikel

    Ein Geschmacks- und Aromaschub im Mund

    Der Ernährungstrend hin zu gesünderen Snacks ist ungebremst. Snacks aus gefriergetrockneten Früchten erfüllen die Erwartungen der Verbraucher an moderne, hochwertige Lebensmittel. Allerdings erfordert die Gefriertrocknung ganzer Früchte lange Trocknungszeiten ... mehr

    Ernährung, Darmflora und Lipidstoffwechsel in der Leber

    Die Natur bringt eine enorme Vielfalt an Lipidmolekülen hervor, die über unterschiedliche Stoffwechselwege synthetisiert werden. Die Fettsäuren sind Bausteine verschiedener Lipide, einschließlich Zellmembranlipiden wie die Phospholipide und Triacylglyceride, die auch die Hauptkomponenten de ... mehr

    Translation

    Die Struktur der chemischen und pharmazeutischen Großindustrie hat sich gewandelt. Traditionelle Zentralforschungsabteilungen, in denen grundlagennahe Wissenschaft ­betrieben wurde, sind ökonomischen Renditebetrachtungen zum Opfer gefallen. mehr

  • Autoren

    Prof. Dr. Ulrich Kulozik

    Ulrich Kulozik, Jahrgang 1955, studierte Lebensmitteltechnologie an der Technischen Universität München, wo er 1986 promovierte und sich 1991 für die Fächer Lebensmittel- und Bio-Prozesstechnik habilitierte. Er war bis 1999 u.a. als Department Manager Process & Product Development und Strat ... mehr

    Mine Ozcelik

    Mine Ozcelik, Jahrgang 1984, schloss an der Universität Ankara (Türkei) ihr Studium in Chemieingenieurwesen 2008 mit dem Bachelor und 2012 mit dem Master of Engineering ab. Ab September 2008 arbeitete sie in der Lebensmittelindustrie als F&E- und Laborleiterin in Ankara, wo sie die ersten F ... mehr

    Dr. Josef Ecker

    Josef Ecker, Jahrgang 1978, studierte Biologie an der Universität in Regensburg. Er promovierte 2007 und forschte danach als Postdoc am Uniklinikum in Regensburg am Institut für Klinische Chemie. Nach einer anschließenden mehrjährigen Tätigkeit in der Industrie im Bereich der Geschäftsführu ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.