q&more
Meine Merkliste
my.chemie.de  
Login  

News

Biologische Maschine produziert ihre eigenen Bauteile

Erstmals Genom in der Größe einer Minimalzelle entwickelt, das sich selbst kopieren kann

© emieldelange by adobestock

Ein biologische Maschine, die sich selbst vervielfältigt, wurde im Reagenzglas erzeugt.

18.02.2020: Die synthetische Biologie will nicht nur Prozesse des Lebens beobachen und beschreiben, sondern auch nachahmen. Ein Schlüsselmerkmal des Lebens ist die Replikationsfähigkeit, also die Selbsterhaltung eines chemischen Systems. Wissenschaftler am Max-Planck-Institut (MPI) für Biochemie in Martinsried haben jetzt ein System erzeugt, das im Reagenzglas einen Teil seiner eigenen DNA und Proteinbausteine regenerieren kann.

Um die Grundprozesse des Lebens besser zu verstehen, beschäftigen sich Forscher aus dem Bereich der synthetischen Biologie mit sogenannten „Bottom-up“-Prozessen, also der Erzeugung von lebensähnlichen Systemen aus unbelebten molekularen Bausteinen. Eine der grundlegensten Eigenschaften aller lebenden Organismen ist die Fähigkeit, sich als abgegrenzte Einheiten selbst zu erhalten und zu reproduzieren. Die künstliche „Bottom-up“ Erzeugung eines Systems, das sich selbst vervielfältigen kann, ist allerdings eine große experimentelle Herausforderung. Zum ersten Mal ist es Wissenschaftlern gelungen diese Hürde zu überwinden und solch eine Einheit synthetisch herzustellen.

Eine biologische Maschine produziert ihre eigenen Bauteile

Hannes Mutschler, Leiter der Forschungsgruppe „Biomimetische Systeme“ am MPI für Biochemie widmet sich mit seinem Team der „Bottom-up“ Nachstellung der Genomvervielfältigung und Proteinsynthese. Beide Prozesse sind elementar für die Selbsterhaltung und Vervielfältigung biologischer Systeme. Den Forschern gelang es nun, ein System im Reagenzglas herzustellen, in welchem beide Prozesse gleichzeitig ablaufen können. „Unser System ist in der Lage, einen wesentlichen Anteil seiner molekularen Bestandteile selbst zu regenerieren“, erklärt Mutschler. Um diesen Prozess zu starten, benötigten die Forscher eine Bauanleitung sowie verschiedene molekulare „Maschinen“ und Nährstoffe. Übersetzt in biologische Termini handelt es sich bei der Bauanleitung um DNA, welche die Information für den Aufbau der Proteine gespeichert hat. Proteine werden dagegen gern als „molekulare Maschinen“ bezeichnet, da sie in Organismen häufig die katalytische Beschleunigung biochemischer Reaktionen bewirken. Die Grundbausteine der DNA sind die sogenannten Nukleotide. Das Ausgangsprodukt für die Proteine sind Aminosäuren.

Modularer Aufbau der Bauanleitung

Konkret haben die Forscher ein sogenanntes In vitro-Expressionssystem optimiert, das Proteine ausgehend von einer DNA-Bauanleitung aus synthetisiert. Durch veschiedene Verbesserungen ist das In vitro-Expressionssystem jetzt in der Lage, sehr effizient als DNA-Polymerasen bezeichnete Proteine zu synthetisieren. Diese DNA-Polymerasen vervielfältigen im Anschluss unter Verwendung von Nukleotiden die im System vorliegende DNA. Kai Libicher, Erstautor der Studie, erklärt: „Anders als in früheren Studien kann unser System vergleichsweise lange DNA-Genome ablesen und kopieren.“ Die künstlichen Genome haben die Wissenschaftler dabei aus bis zu 11 ringförmigen DNA-Stücken zusammengesetzt. Dieser modulare Aufbau ermöglicht es ihnen relativ einfach, bestimmte DNA-Abschnitte in die Bauanleitung einzufügen oder wieder zu entfernen. Das größte von den Forschern in der Studie vervielfältigte modulare Genom besteht aus mehr als 116.000 Basenpaaren und erreicht damit die Genomlänge von sehr einfach aufgebauten Zellen.

Regeneration der Proteine

Neben den für die DNA-Vervielfältigung wichtigen Polymerasen kodiert das künstliche Genom weitere Proteine, wie beispielsweise 30 Translationsfaktoren, die ursprünglich aus dem Bakterium Escherischia coli stammen. Translationsfaktoren sind wichtig für die Übersetzung der DNA-Bauanleitungen in die jeweiligen Proteine und daher essentiell für selbstvervielfältigende Systeme, die sich an der existierenden Biochemie orientieren. Um zu zeigen, dass das neue In vitro-Expressionssystem nicht nur DNA nachbilden kann, sondern auch seine eigenen Translationsfaktoren herstellen kann, haben die Forscher die Menge der vom System produzierten Proteine mit Hilfe der Massenspektrometrie ermittelt. Überraschenderweise zeigte sich, dass ein Teil der Translationsfaktoren nach der Reaktion sogar in größeren Mengen vorhanden waren als sie zuvor eingesetzt wurden. Dies werten die Forscher als einen bedeutenden Schritt in Richtung eines sich kontinuierlich selbstvervielfältigenden Systems, das biologische Vorgänge nachahmt.

In Zukunft möchten die Wissenschaftler das künstliche Genom um weitere DNA-Abschnitte erweitern und in Zusammenarbeit mit Kollegen aus dem MaxSynBio-Forschungsnetzwerk ein umhülltes System fertigen, das in der Lage ist, durch Zugabe von Nährstoffen und Entsorgung von Abfallprodukten lebensfähig zu bleiben. Eine solche Minimalzelle könnte dann beispielsweise in der Biotechnologie als maßgeschneiderte Produktionsmaschine für Naturstoffe verwendet werden oder als Plattform um weitere noch komplexere lebensähnliche Systeme zu bauen.

Originalveröffentlichung:
Kai Libicher, Renate Hornberger, Michael Heymann & Hannes Mutschler; "In vitro self-replication and multicistronic expression of large synthetic genomes"; Nature Communications, Februar 2020

Fakten, Hintergründe, Dossiers

  • synthetische Biologie
  • Genome

Mehr über MPI für Biochemie

  • News

    Zur richtigen Zeit am richtigen Ort

    Proteine sind molekulare Arbeitspferde der Zelle, die bestimmte Aufgaben erfüllen. Dabei ist es wichtig, dass der Zeitpunkt der Proteinaktivitäten genauestens kontrolliert wird. Wenn die Proteine ihre Aufgaben erfüllt haben, können Prozesse beendet werden, die unnötig oder schädlich sind. U ... mehr

    10-fach schnellere Superauflösungsmikroskopie

    Fortschritte in der Fluoreszenzmikroskopie ermöglichen es, biologische Prozesse unterhalb der klassischen Beugungsgrenze des Lichtes sichtbar zu machen. Eine Variante dieser sogenannten Superauflösungstechniken ist DNA-PAINT, die von Ralf Jungmann, Forschungsgruppenleiter für "Molekulare Bi ... mehr

    Neue Methode zur genauen Proteinbestimmung

    Auf dem Weg zur personalisierten Medizin zeigt sich, dass die Analyse von Proteinen einen immer höheren Stellenwert einnimmt. Die Messmethodik der Wahl ist hierfür die Massenspektrometrie. Wissenschaftler am Max-Planck-Institut für Biochemie haben die neue Markierungsmethode EASI-tag für Pr ... mehr

Mehr über Max-Planck-Gesellschaft

  • News

    High Speed-Modell für den Kampf gegen Corona

    Bevor Therapien gegen Sars-CoV am Menschen getestet und allgemein zugänglich gemacht werden, muss ihre Wirkung an Tieren untersucht und optimiert werden. Die Maus ist ein in der Medizin häufig eingesetzter Modellorganismus. Da sich Rezeptormoleküle zwischen Menschen und Mäusen so stark unte ... mehr

    Embryonalentwicklung in der Petrischale

    Werden Stammzellen von Mäusen in einem speziellen Gel kultiviert, wachsen Strukturen heran, die einem Teil des Embryos ähneln. Ein Berliner Forschungsteam zeigt, wie aus kugeligen Zellhaufen innerhalb von fünf Tagen Gebilde mit Anlagen für Nerven-, Knochen-, Knorpel- und Muskelgewebe heranw ... mehr

    Auflösungsweltrekord in der Kryo-Elektronenmikroskopie

    Eine entscheidende Auflösungsgrenze in der Kryo-Elektronenmikroskopie ist geknackt. Holger Stark und sein Team am Max-Planck-Institut (MPI) für biophysikalische Chemie haben zum ersten Mal einzelne Atome in einer Proteinstruktur beobachtet und die bisher schärfsten Bilder mit dieser Methode ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.