q&more
Meine Merkliste
my.chemie.de  
Login  

News

Soziale Kontrolle zwischen Immunzellen hilft bei Abwehr von Infektionen

Erkenntnis könnte Immuntherapien bei Krebs verbessern

Immunity Journal

Das Bild zeigt miteinander wechselwirkende T-Zellen, wobei die Zelloberfläche rot eingefärbt ist, der Zellkern blau und die für die Kommunikation zwischen den Zellen wichtigen Rezeptoren grün.

13.02.2020: Ein einfacher, bislang von Bakterien bekannter Mechanismus sorgt dafür, dass das Immunsystem nach einer Infektion die Balance zwischen der schnellen Vermehrung von Immunzellen und einer überschießenden selbst-schädigenden Reaktion findet. Das haben jetzt Wissenschaftler des Universitätsklinikums Freiburg mit Kollegen aus den Niederlanden und Großbritannien entschlüsselt. Durch eine Infektion werden T-Zellen schnell aktiviert, was zu deren Vermehrung führt. Das Forschungsteam zeigte nun, dass sich diese Zellen gegenseitig wahrnehmen können und anhand der T-Zelldichte gemeinsam entscheiden, ob sie sich weiter vermehren oder nicht. Der neu entdeckte Mechanismus könnte auch zur Verbesserung von Krebs-Immuntherapien beitragen.

Kooperative Immunzellen

„Wir konnten zeigen, dass sich diese Immunzellen gegenseitig wahrnehmen und miteinander kommunizieren. Die Immunzellen arbeiten als Team und nicht als Einzelkämpferinnen“, sagt Studienleiter Dr. Jan Rohr, Wissenschaftler am Centrum für Immundefizienz (CCI) des Universitätsklinikums Freiburg. „Dieses Prinzip der Dichte-Kontrolle von Immunzellen ist einfach und sehr wirksam. Das macht es zuverlässig und zugleich hoffentlich zugänglich für therapeutische Ansätze“, so Rohr. Bei niedriger Dichte unterstützen sich die T-Zellen gegenseitig in ihrer Vermehrung. Sobald dadurch ein Schwellenwert der Zelldichte erreicht wird, schlägt die gegenseitige Unterstützung in eine gegenseitige Hemmung um, die die weitere Zellvermehrung verhindert. Dieser Mechanismus führt dazu, dass anfänglich schwache Immunreaktionen effizient verstärkt und andererseits überschießende und somit potentiell gefährliche Immunreaktionen wirksam gebremst werden.

Immuntherapien könnten noch wirksamer werden

Diese Erkenntnis wirft ein neues Licht auf die Immuntherapie bei Krebs. Tumore schützen sich durch die Unterdrückung des Immunsystems. Darum werden bei bestimmten Immuntherapien den Patient*innen T-Zellen entnommen, im Labor fit gegen den Krebs gemacht, vermehrt und schließlich wieder den Patient*innen zurückgegeben. Bislang werden dabei meist hohe Zellzahlen verabreicht, um die Therapie besonders wirksam zu machen. „Möglicherweise schalten sich die Immunzellen gegenseitig aus, wenn sie wie bisher einmalig in hoher Zellzahl verabreicht werden. Die wiederholte Gabe weniger Immunzellen könnte die Tumorzellen vielleicht wirksamer bekämpfen.“, sagt Rohr. Inwieweit dies aktuelle Therapieansätze verbessern könnte, muss in weiteren Untersuchungen überprüft werden.

Von Zellen im Labor zum Computermodell

Für ihre Untersuchungen erforschten die Wissenschaftler*innen die Immunzellen mittels mikroskopischer Zeitrafferaufnahmen und genetischer Analysen im Labor. Auf Grundlage der dabei erzielten Erkenntnisse wurde von Wissenschaftler*innen der Universität Leiden, Niederlande, ein mathematisches Modell der T-Zell-Interaktion erstellt. Dadurch konnten sie die quantitative Beziehung zwischen der Dichte der T-Zellen und den wachstumsstimulierenden bzw. -hemmenden Signalen, die T-Zellen zueinander senden, bestätigen. Schließlich wurden diese Modelle im Tiermodell überprüft. „Die unterschiedlichen Forschungsansätze haben sich gegenseitig sehr gut ergänzt und unterstützt“, sagt der Freiburger Studienleiter.

Originalveröffentlichung:
"Quorum-regulation mediated by nested antagonistic feedback circuits via CD28 and CTLA-4 confers robustness to CD8+ T cell population dynamics"; Immunity; 2020

Fakten, Hintergründe, Dossiers

  • Immunsystem
  • Immunzellen
  • T-Zellen
  • Infektionen
  • Krebsimmuntherapie

Mehr über Uni Freiburg

  • News

    Datenanalyse zum Coronavirus

    Dr. Wolfgang Maier und Dr. Björn Grüning von der Albert-Ludwigs-Universität haben zusammen mit Forschern von Universitäten in Belgien, Australien und den USA die bisher verfügbaren Daten zu Sequenzen des neuartigen Coronavirus überprüft und auf der Open-Source-Plattform Galaxy veröffentlich ... mehr

    Süße Nanopartikel tricksen die Niere aus

    In den vergangenen zehn Jahren konnte die Nanomedizin dazu beitragen, Krebserkrankungen besser zu erkennen und zu behandeln. Da Nanopartikel mehrere 100-mal kleiner sind als das kleinste Sandkorn, können sie im Blutkreislauf leicht zum Tumor gelangen. Sie sind jedoch zu groß, um von den Nie ... mehr

    Wie das Immunsystem blind für Krebszellen wird

    Im Kampf gegen veränderte Zellen im Körper, die zu Krebs werden können, leisten die T-Zellen des Immunsystems Schwerstarbeit. Fresszellen und B-Zellen entdecken Veränderungen und aktivieren die T-Zellen. Diese starten ein regelrechtes Vernichtungsprogramm. Das funktioniert in vielen Fällen ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.