q&more
Meine Merkliste
my.chemie.de  
Login  

News

Proteine in ihrer natürlichen Umgebung beobachten

© RUB, Marquard

Laura Galazzo (links) und Enrica Bordignon nutzen winzige Teile von Antikörpern, um Proteine genau zu untersuchen.

11.02.2020: Proteine können dafür verantwortlich sein, dass Wirkstoffe von Medikamenten aus den Zielzellen einfach wieder herausgeschleust werden. Dabei kann man ihnen jetzt zuschauen.

Bestimme Medikamente, zum Beispiel gegen Krebserkrankungen, verlieren ihre Wirkung, weil Proteine in der Membran der Zielzelle sie einfach wieder ausschleusen. Ein verantwortliches Transportprotein konnte ein Team der Ruhr-Universität Bochum (RUB) erstmals in seiner natürlichen Umgebung beobachten. Dazu markierten die Forscher es mit kleinen Sequenzen von Antikörpern, an denen ein Kontrastmittel angedockt war. Dessen Spin konnten sie mittels Elektronenspinresonanz detektieren und Rückschlüsse auf den Zustand des Proteins ziehen. Über die Methode berichtet das Team um Prof. Dr. Enrica Bordignon und Dr. Laura Galazzo vom Exzellenzcluster Ruhr Explores Solvation Resolv in Zusammenarbeit mit der Gruppe von Prof. Dr. Markus Seeger von der Universität Zürich in der Zeitschrift PNAS vom 4. Februar 2020.

Nanobodies finden das Protein und binden daran

Bisher konnte man Membranproteine nur isoliert untersuchen, wobei die Gefahr besteht, dass sie ihre für die Funktion ausschlaggebende Gestalt verlieren. Das Team von Resolv konnte sie nun in ihrer natürlichen Umgebung in der Membran von Escherichia-coli-Bakterien beobachten. „Dort ist es sehr eng und voll“, beschreibt Enrica Bordignon. Der Trick des Teams besteht darin, zwei nur wenige Nanometer kleine Sequenzen von Antikörpern als Markierung zu benutzen, sogenannte Nanobodies. „Wir verwenden exakt die Sequenzen, die bestimmte Abschnitte des Proteins erkennen und daran binden können“, erklärt Laura Galazzo.

Die Auswahl der richtigen Nanobodies übernahm das Team von Markus Seeger. „Dank der von uns entwickelten Selektionsplattform, die die Immunisierung von Tieren umgeht, kann jedes Labor schnell synthetische Nanobodies für jeden Zweck erzeugen. Das bedeutet einen Schritt zu ihrer Verwendung in der strukturellen Biologie, wie diese Arbeit zeigt“, so Seeger.

An die beiden Nanobodies werden Gadolinium-Atome angehängt. Gadolinium wird auch als Kontrastmittel für Kernspintomografien eingesetzt und kann aufgrund seines Elektronenspins sichtbar gemacht werden. Da sich die so markierten Nanobodies schlecht in Bakterien einschleusen lassen, wurden diese nach außen umgestülpt, sodass das Innere der Membran außen zu liegen kam.

Signal nur bei einer bestimmten Gestalt

„Die Nanobodies binden sofort an die Sequenz des Membranproteins, die sie erkennen, und sind dann auch kaum noch von ihnen zu lösen“, so Enrica Bordignon. Die so behandelten Bakterien untersuchten die Forscher dann mittels Elektronenspinresonanz, englisch electron paramagnetic resonance, kurz EPR. „Dabei konnten wir nur dann ein Signal empfangen, wenn sich zwei unserer unterschiedlichen Nanobodies in unmittelbarer Nähe zueinander befanden“, erklärt Laura Galazzo. Das war genau dann der Fall, wenn das Protein die Konformation einnimmt, die Wirkstoffe aus der Zelle herausschleust.

„Unsere Arbeit zeigt, dass die Methode, mit der wir Abstände im Bereich von 1,5 bis 6 Nanometern erreichen, funktioniert“, so Enrica Bordignon. „Im nächsten Schritt wollen wir die Nanobodies in Bakterien einschleusen, um künftig an lebenden Zellen beobachten zu können, wann das Membranprotein in welchem Zustand ist." „Diese Technik eröffnet ungeahnte Möglichkeiten“, sagt Laura Galazzo.

Originalveröffentlichung:
Laura Galazzo, Gianmarco Meier, M. Hadi Timachi, Cedric A. J. Hutter, Markus A. Seeger, Enrica Bordignon; "Spin-labeled nanobodies as protein conformational reporters for electron paramagnetic resonance in cellular membranes"; PNAS; 2020.

Fakten, Hintergründe, Dossiers

  • Proteine
  • Transportproteine
  • Membranproteine
  • Escherichia coli
  • Nanobodies
  • Elektronenspinreson…
  • EPR-Spektroskopie

Mehr über Ruhr-Universität Bochum

  • News

    Iodidsalze machen Biokatalysatoren für Brennstoffzellen stabil

    Sauerstoff ist der größte Feind von Biokatalysatoren für die Energieumwandlung. Ein Schutzfilm schirmt sie ab – aber nur mit einer weiteren Zutat: Iodidsalz. Entgegen theoretischen Vorhersagen inaktiviert Sauerstoff Biokatalysatoren für die Energieumwandlung auch unter einem Schutzfilm binn ... mehr

    Wie genau Cyanobakterien CO2 so effizient umwandeln

    Ein Forschungsteam konnte das Geheimnis der Bakterien lüften. Künftig wird es so möglich, bei ihnen abzuschauen. Fotosynthetische Organismen nutzen mithilfe von Sonnenlicht Kohlenstoffdioxid aus der Luft zum Aufbau von Biomasse. Cyanobakterien sind dabei besonders effizient, weil sie das Ga ... mehr

    Neue Erkenntnisse über die Recyclingfabriken der Zellen

    Wie kleine Müllschlucker säubern Organellen die Zellen von überflüssigem oder defektem Material. Welche Mechanismen dahinterstecken, finden Forscher gerade heraus. Die Zellen sowohl von Tieren als auch von Pflanzen sind darauf angewiesen, dass sie von ihrem eigenen beschädigten oder überflü ... mehr

  • q&more Artikel

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

    Mathies V. Evers

    Mathies Evers, Jahrgang 1989, studierte Chemie an der Ruhr-Universität Bochum, wo er an der Synthese atompräziser molekularer Cluster forschte. Nach seinem Masterabschluss begann er seine Doktorarbeit am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik und wird durch den ... mehr

    Prof. Dr. Kristina Tschulik

    Kristina Tschulik promovierte im Jahr 2012 an der TU Dresden und arbeitete als Postdoktorandin am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden sowie an der Universität Oxford. Danach baute sie gefördert durch ein NRW-Rückkehrprogramm die Arbeitsgruppe für „Elektrochemie u ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.