q&more
Meine Merkliste
my.chemie.de  
Login  

News

Wie das Immunsystem blind für Krebszellen wird

Forschende klären die Aktivierung eines Schlüsselproteins auf, mit dem Tumorzellen die Abwehrreaktion des Körpers stoppen

CIBSS/Universität Freiburg, Michal Rössler

im Körper teilen. Wissenschaftler Die Albert-Ludwigs-Universität Freiburg bildet gemeinsam mit den Universitäten Basel, Haute-Alsace und Strasbourg sowie dem Karlsruher Institut für Technologie den Verbund Eucor – The European Campus. Er bündelt die Kompetenzen und Potenziale von 15.000 Forschenden, 11.000 Promovierenden und mehr als 120.000 Studierenden. Die Universitäten entwickeln eine gemeinsame Strategie in Forschung und Lehre und schaffen übergreifende Strukturen für die Wissenschaft am Oberrhein. 3 !!! SPERRFRIST !!! haben nun einen wichtigen Schritt dieser Strategie namens "Immune Escape" aufgeklärt.

04.02.2020: Im Kampf gegen veränderte Zellen im Körper, die zu Krebs werden können, leisten die T-Zellen des Immunsystems Schwerstarbeit. Fresszellen und B-Zellen entdecken Veränderungen und aktivieren die T-Zellen. Diese starten ein regelrechtes Vernichtungsprogramm. Das funktioniert in vielen Fällen gut – bis Krebszellen so mutieren, dass sie eine Art Tarnkappe entwickeln und dem Immunsystem entkommen. Forscherinnen und Forscher der Universität Freiburg und der Leibniz Universität Hannover (LUH) haben nun aufgeklärt, wie ein Schlüsselprotein dieser als „Immune Escape“ bezeichneten Strategie von Tumorzellen aktiviert wird. Das Team um Prof. Dr. Maja Banks-Köhn und Prof. Dr. Wolfgang Schamel von den Exzellenzclustern für Biologische Signalstudien CIBSS und BIOSS der Universität Freiburg und die Strukturbiologin Prof. Dr. Teresa Carlomagno von der LUH nutzten dafür biophysikalische, biochemische und immunologische Methoden. Die Chemische Biologin Banks-Köhn hofft, in Zukunft Wirkstoffe zu entwickeln, die spezifisch in diesem Aktivierungsmechanismus wirken und die etablierten Krebstherapien mit so genannten Immun-Checkpoint-Inhibitoren zu verbessern. Die Ergebnisse stellt das Forschungsteam in einer Studie im Fachmagazin Science Advances vor.

Checkpoint-Inhibitoren sind therapeutische Antikörper, die an Rezeptoren von T-Zellen wirken. Oberflächenproteine wie der Immun-Checkpoint Programmed Death 1 (PD1) sowie der Signalweg, den sie auslösen, beenden im gesunden Körper Immunantworten. Diese Regulierung verhindert, dass Entzündungssymptome wie Rötungen, Schwellungen oder Fieber zu lange anhalten und außer Kontrolle geraten. Krebszellen machen sich diesen Mechanismus zu Nutze, um den Körper gegen ihre Vermehrung hilflos zu machen: In Zellkulturen und mittels Interaktionsstudien fanden die Forscher aus Freiburg und Hannover heraus, dass ein Signalprotein namens SHP2 in den T-Zellen zweifach an PD1 bindet, nachdem es von einem Signal der Krebszellen aktiviert wurde. Erst die doppelte Bindung an SHP2 vermittelt die Tarnkappenwirkung und schaltet die Antwort der Immunzellen ganz ab.

Antikörpertherapien, die Immuninhibitoren wie PD1 blockieren, sind zur Behandlung von Melanomen und Lungenkarzinomen zugelassen und verlängern das Leben der Patientinnen und Patienten. Viele leiden jedoch unter autoimmunen Reaktionen. „Wirkstoffe, die die Bindung von SHP2 und PD1 verhindern, könnten in Zukunft helfen, Nebenwirkungen zu mindern und als Ergänzung oder Alternative zu Antikörpertherapien eingesetzt werden“, erklärt Banks-Köhn. Sie untersuchte gemeinsam mit Schamel die Immunantwort von B- und T-Zellen, in denen sie SHP2-Moleküle veränderten. Sie testeten damit Vorhersagen, die sie anhand der Kristallstruktur- und Magnetresonanzanalyse des Teams aus Hannover aufstellten. Deren Daten zeigen, wie genau und mit welchen Bereichen das Protein SHP2 an PD1 bindet und weisen damit auf mögliche Angriffspunkte für Wirkstoffe hin. „In unserem laufenden Forschungsprojekt im CIBSS – Centre for Integrative Biological Signalling Studies wollen wir nun den Signalweg von PD1 aufschlüsseln – wo die Proteine in der Zelle sind, wo sie binden und in welchem Zeitraum die Signale wirken“, erklärt Banks-Köhn.

Originalveröffentlichung:
Marasco, M./Berteotti, A./Weyershaeuser, J./Thorausch, N./Sikorska. J./Krausze, J./Brandt, H. J./Kirkpatrick, J./Rios, P./Schamel, W. W./Köhn, M./Carlomagno, T. (2020): "Molecular mechanism of SHP2 activation by PD-1 stimulation."; Science Advances 2020/6.

Fakten, Hintergründe, Dossiers

  • Zellen
  • Krebszellen
  • Tumorzellen
  • Immunsystem
  • Antikörpertherapien
  • Universität Freiburg
  • therapeutische Antikörper
  • Gottfried Wilhelm L…

Mehr über Uni Freiburg

  • News

    Datenanalyse zum Coronavirus

    Dr. Wolfgang Maier und Dr. Björn Grüning von der Albert-Ludwigs-Universität haben zusammen mit Forschern von Universitäten in Belgien, Australien und den USA die bisher verfügbaren Daten zu Sequenzen des neuartigen Coronavirus überprüft und auf der Open-Source-Plattform Galaxy veröffentlich ... mehr

    Soziale Kontrolle zwischen Immunzellen hilft bei Abwehr von Infektionen

    Ein einfacher, bislang von Bakterien bekannter Mechanismus sorgt dafür, dass das Immunsystem nach einer Infektion die Balance zwischen der schnellen Vermehrung von Immunzellen und einer überschießenden selbst-schädigenden Reaktion findet. Das haben jetzt Wissenschaftler des Universitätsklin ... mehr

    Süße Nanopartikel tricksen die Niere aus

    In den vergangenen zehn Jahren konnte die Nanomedizin dazu beitragen, Krebserkrankungen besser zu erkennen und zu behandeln. Da Nanopartikel mehrere 100-mal kleiner sind als das kleinste Sandkorn, können sie im Blutkreislauf leicht zum Tumor gelangen. Sie sind jedoch zu groß, um von den Nie ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.