q&more
Meine Merkliste
my.chemie.de  
Login  

News

Lass uns eine Zelle bauen

Minimales synthetisches Zellsystem zur Untersuchung grundlegender Zellfunktionen entwickelt

Copyright: Love et al. / MPI-CBG

Synthetische Zellen mit Kompartimenten. Magenta kennzeichnet die Lipidmembran, Cyan die fluoreszenzmarkierten membranfreien Unterkompartimente.

24.01.2020: Zellen sind die Grundbausteine allen Lebens. Ihr Inneres bietet eine ideale Umgebung, in der die elementaren Moleküle des Lebens interagieren können, um chemische Reaktionen stattfinden zu lassen und somit Leben ermöglichen. Die biologische Zelle ist jedoch sehr komplex, sodass es schwierig ist, zu verstehen, was in ihr vorgeht. Eine Möglichkeit, dieses biologische Problem zu lösen, ist die Entwicklung einer synthetischen minimalen Zelle, die im Vergleich zu biologischen Zellen ein einfacheres System darstellt. Forscher des Max-Planck-Instituts für molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden und des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung (MPIKG) in Potsdam haben solch eine technische Herausforderung gemeistert, indem sie eine minimal komplexe synthetische Zelle gebaut haben, in der grundlegende biochemische Reaktionen ablaufen können und die auf Veränderungen in der Umwelt reagieren kann.

Zellen als Grundbausteine des Lebens bieten ein spezifisches und dynamisches Umfeld, in dem sich Moleküle organisieren und Reaktionen ablaufen, die zur Erhaltung des Lebens notwendig sind. Im Inneren der Zelle befinden sich unzählige Moleküle wie DNA, Proteine, Zucker und Fette (Lipide), die auf unterschiedliche Weise zusammenfinden müssen. Um zu verstehen, wie Zellen all diese Bestandteile organisieren, um in einer komplexen Umgebung zu funktionieren, haben Wissenschaftler synthetische Zellen mit weniger Bestandteilen gebaut und damit einfache Systeme entwickelt, die bestimmte zelluläre Prozesse nachahmen. Dieses Forschungsfeld der synthetischen Biologie verbindet Technik und Biologie miteinander und verwendet Bestandteile des natürlichen biologischen Systems und vereinfacht diese.

Trotz vieler Erfolge in der synthetischen Biologie ist der Aufbau dynamischer Systeme immer noch eine große Herausforderung. Das im Rahmen des MaxSynBio-Netzwerks geförderte Forschungsteam, bestehend aus der MPI-CBG-Forschungsgruppenleiterin Dora Tang und den MPIKG-Forschungsgruppenleitern Rumiana Dimova und Tom Robinson, hat diese technische Schwierigkeit nun gemeistert und eine synthetische Zelle gebaut, die auf Veränderungen in der Umwelt reagieren kann. Die Forscher konstruierten ein Kompartiment mit einer Membran, welches im Inneren ein membranfreies Kompartiment enthält. Diese Unterkompartimente können sich in Abhängigkeit von den Veränderungen in der Umwelt zusammenfinden und auch wieder zerlegen. Die größte Herausforderung bei diesem Projekt war es, ein Kompartiment aus einzelnen Molekülen zu schaffen, die in der synthetischen Zelle schwimmen. Diese Zellen wurden durch Fluoreszenzmikroskopie sichtbar gemacht. Celina Love, die Erstautorin der Studie, erklärt: “So wie wir mit unseren Geschmacksnerven salzig oder sauer schmecken können, so können auch Komponenten im Inneren einer Zelle auf den Säuregehalt (pH-Wert) einer Umgebung reagieren. Wir haben herausgefunden, dass wir durch die Veränderung des pH-Wertes der Umgebung das Verhalten der aufeinandertreffenden Moleküle und ihre Fähigkeit, membranfreie Kompartimente zu bilden, beeinflussen können. Es war besonders spannend zu beobachten, wie chemische Reaktionen durch Veränderung des Säuregrades innerhalb der synthetischen Zelle an- und ausgeschaltet werden können.“

Dora Tang, die Leiterin der Studie, gibt einen Ausblick: „Unsere Arbeit ist ein großer Schritt nach vorn, um komplexere synthetische Zellen zu bauen, die biologisches Verhalten imitieren können.“ Sie ergänzt: „Dieses regulierbare synthetische System eröffnet spannende Möglichkeiten, um grundlegende Fragen der Biologie zu beantworten, wie zum Beispiel Zellen viele und verschiedene Signalen aus der Umwelt aufnehmen können, um grundlegende zelluläre Funktionen wie den Stoffwechsel in Gang zu setzen und zu regulieren.“

Originalveröffentlichung:
Celina Love, Jan Steinkühler, David T. Gonzales, Naresh Yandrapalli, Tom Robinson, Rumiana Dimova, T.‐Y. Dora Tang; "Reversible pH responsive coacervate formation in lipid vesicles activates dormant enzymatic reactions"; Angewandte Chemie, International Edition, 14. Januar, 2020.

Fakten, Hintergründe, Dossiers

  • Zellen
  • künstliche Zellen
  • synthetische Biologie

Mehr über MPI für molekulare Zellbiologie und Genetik

  • News

    Wie Zellen unsere Organe dichthalten

    Unsere Organe sind spezialisierte Kompartimente mit jeweils eigenem Milieu und Funktion. Um unsere Organe nach außen abzudichten, müssen die Zellen im Epithelgewebe eine Barriere bilden, die sogar für Moleküle dicht ist. Diese Barriere wird durch einen Proteinkomplex gebildet, der alle Zell ... mehr

    Leber besitzt Struktur ähnlich von Flüssigkristallen

    Das bisher benutzte, aus dem Jahr 1949 stammende Modell der Leberläppchen konnte nur bedingt veranschaulichen, wie Lebergewebe strukturiert und gebildet wird. Wissenschaftler der Max-Planck-Institute für molekulare Zellbiologie und Genetik sowie für Physik komplexer Systeme haben nun zusamm ... mehr

    Selbstlernende Netzwerke lassen Forscher mehr sehen

    Moderne Mikroskope können mehrstündige 3D-Zeitrafferfilme von jeder einzelnen Zelle im sich entwickelnden Organismus aufnehmen. Genau wie bei normaler Fotografie benötigen Fluoreszenzmikroskope eine ausreichende Menge Licht, um dunkle und verrauschte Bilder zu vermeiden. Allerdings kann die ... mehr

Mehr über MPI für Kolloid- und Grenzflächenforschung

  • News

    "Form ist Funktion"

    Forscher am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam haben gezeigt, dass sich wachsendes Knochengewebe auf langen Zeitskalen wie eine viskose Flüssigkeit verhält und dadurch Formen mit minimaler Oberfläche annimmt. Dieses Verhalten der Zellen bestimmt die Form d ... mehr

    Neue Technologie schützt Materialien besonders lange vor Korrosion

    Die Firma Enviral hat eine Korrosionsschutz-Technologie vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung einlizenziert, die auf neuesten Ergebnissen in der Nanotechnologie beruht. Die neuen Smart Pigments für die Verwendung in Korrosionsschutzbeschichtungen besitzen selbstheil ... mehr

    Steife Fasern aus Schleim gesponnen

    Die Natur ist immer wieder ein guter Lehrmeister – auch für Materialwissenschaftler. An Stummelfüßern haben Wissenschaftler nun einen bemerkenswerten Mechanismus beobachtet, durch den sich Polymermaterialien bilden. Um Beute zu fangen, schießen die wurmartigen Kleintiere mit einem klebrigen ... mehr

  • q&more Artikel

    Mit Licht im Kampf gegen Malaria

    Malaria stellt ein globales Gesundheitsproblem dar, das nur schwer in den Griff zu bekommen ist. Von den mehr als 200 Millionen Erkrankten sterben jedes Jahr über 500.000 und insbesondere für Kinder ist die Gefahr eines tödlichen Verlaufs hoch [1]. Die Krankheit wird durch einzellige Erreg ... mehr

  • Autoren

    Dr. Daniel Kopetzki

    Daniel Kopetzki, geb. 1983, studierte Chemie an der Universität Regensburg und promovierte am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam in der Abteilung Kolloidchemie. Seit Sept. 2011 arbeitet er als Postdoktorand bei Prof. Dr. Seeberger am Max-Planck-Institut fü ... mehr

    Prof. Dr. Peter Seeberger

    Peter H. Seeberger, geb. 1966, studierte Chemie an der Universität Erlangen-Nürnberg und promovierte in Biochemie an der University of Colorado. Nach einem Postdocaufenthalt am Sloan-Kettering Institute for Cancer Research in New York City war er von 1998 – 2002 Assistant Professor und Firm ... mehr

Mehr über Max-Planck-Gesellschaft

  • News

    Nachhaltige Nutzung von CO2 mittels eines modifizierten Bakteriums

    Einem Team von Wissenschaftlern des Max-Planck-Instituts für Molekulare Pflanzenphysiologie in Potsdam-Golm unter Leitung von Dr. Arren Bar-Even ist es gelungen, die Ernährung des Bakteriums E. coli so umzuprogrammieren, dass es Ameisensäure oder Methanol als einzige Nahrungsquelle nutzen k ... mehr

    Antikörper als körpereigene Antidepressiva

    Greift das Immunsystem den eigenen Körper an, hat das oft verheerende Folgen: Autoantikörper binden an körpereigene Strukturen und lösen entsprechende Funktionsstörungen aus. Auch Rezeptoren für den Neurotransmitter Glutamat können Ziel von Autoantikörpern werden. Wissenschaftler vom Max-Pl ... mehr

    Aus eins mach zwei – Teilung künstlicher Zellen

    Die Erfolgsgeschichte des Lebens auf der Erde beruht auf der erstaunlichen Fähigkeit von lebenden Zellen, sich in zwei Tochterzellen zu teilen. Während eines solchen Teilungsprozesses muss die äußere Zellmembran eine Reihe von Formänderungen durchlaufen, die schließlich zur Membranteilung f ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.