q&more
Meine Merkliste
my.chemie.de  
Login  

News

Chemiker lassen Bor-Atome wandern

Forscher stellen Kohlenstoff-Kohlenstoff-Kupplungen vor, bei denen das Halbmetall Bor erhalten bleibt

21.01.2020: Organische Moleküle mit Atomen des Halbmetalls Bor zählen zu den bedeutendsten Bausteinen für Syntheseprodukte, die nötig sind, um Arzneistoffe und landwirtschaftliche Chemikalien herzustellen. Bei den üblicherweise in der Industrie eingesetzten Stoffumwandlungen geht allerdings häufig die wertvolle Bor-Einheit verloren, die in einem Molekül ein anderes Atom ersetzen kann. Chemikern der Westfälischen Wilhelms-Universität Münster (WWU) ist es jetzt gelungen, die Anwendungsmöglichkeiten von handelsüblichen und industriell verwendeten Bor-Verbindungen, sogenannten Allylboronsäureestern, wesentlich zu erweitern.

Da sogenannte Boronsäurederivate in ihren Varianten sehr vielfältig und verlässlich anwendbar sind, setzen sie Chemiker häufig ein, um wichtige Kohlenstoff-Kohlenstoff-Kupplungen (C-C-Kupplungen) aufzubauen. Das bedeutendste Verfahren, bei dem Boronsäurederivate verwendet werden, ist die mit dem Nobelpreis ausgezeichnete Suzuki-Miyaura-Kupplung. Ebenfalls breite Anwendung in der Synthese finden die sogenannten Allylboronsäureester, die auch zu dieser Klasse der Bor-Verbindungen gehören.

In ihrer aktuellen Studie stellen die Chemiker um Prof. Dr. Armido Studer vom Organisch-Chemischen Institut der WWU nun C-C-Kupplungen vor, bei denen die Bor-Einheit aus dem Ausgangsstoff im Produkt erhalten bleibt. Die Wissenschaftler verwenden dazu Methoden der sogenannten Radikalchemie. Das Prinzip funktioniert so: Die Bor-Einheit „wandert“ von einem Kohlenstoffatom zum Nachbaratom und ermöglicht dadurch eine zweite C-C-Kupplung.

Durch diese Methode können die Chemiker schrittweise einzelne Bausteine von Molekülen an unterschiedlichen Stellen des Grundgerüsts einbauen. „Da die Bor-Einheit nach wie vor im Produktmolekül verbleibt, sozusagen ,konserviert‘ wird, kann sie zusätzlich durch eine weitere Moleküleinheit ersetzt werden, wofür sich das gesamte Spektrum der industriellen Methoden eignet. Die handelsüblichen Allylboronsäureester erscheinen somit in einem neuen Gewand“, betont Studienleiter Armido Studer. Die neue Methode kann zukünftig unter anderem für die Herstellung von Arzneimitteln relevant sein.

Originalveröffentlichung:
K. Jana et al.; "Radical 1,3-Difunctionalization of Allylboronic Esters with Concomitant 1,2-Boron Shift"; Chem; 2020

Fakten, Hintergründe, Dossiers

  • Bor
  • Boronsäurederivate
  • Radikalchemie

Mehr über WWU Münster

  • News

    Neue Einblicke in die frühesten Ereignisse der Samenkeimung

    So unscheinbar Pflanzensamen für manche Betrachter sind, so außergewöhnlich sind ihre Eigenschaften. Im trockenen Zustand können sie über Jahre ihre Energie speichern, um sie bei geeigneten Umweltbedingungen freizusetzen und zu keimen. Ein bekanntes und zugleich beeindruckendes Beispiel hie ... mehr

    Zwei chirale Katalysatoren arbeiten Hand in Hand

    So wie unsere linke Hand mit unserer rechten Hand nicht deckungsgleich ist, wenn man sie übereinanderlegt, können auch Moleküle Spiegelbilder haben, die bei Drehung oder Verdrehung nicht überlagert werden. Die beiden Spiegelbilder werden von Chemikern als Enantiomere bezeichnet und die ents ... mehr

    Lichtenergie zum Aufbau biologisch aktiver Verbindungen

    Viele biologisch hochaktive Moleküle, darunter synthetische Medikamente, zeichnen sich durch eine zentrale, stickstoffhaltige chemische Struktur aus. Diese Struktur, Isochinuclidin genannt, hat eine dreidimensionale Form – wodurch sie besser mit Enzymen und Proteinen interagieren kann als f ... mehr

  • q&more Artikel

    Alternativen zum Tierversuch?

    Die Aufklärung des Metabolismus potenzieller neuer Wirkstoffe ist eine der großen Herausforderungen in der pharmazeutischen Forschung und Entwicklung. Sie ist in der Regel sehr zeitaufwändig und kostenintensiv. Klassische Ansätze basieren dabei im Wesentlichen auf In-vivo-Experimenten mit L ... mehr

    Ausdrucksstark

    Biologische Moleküle an Oberflächen zu koppeln und in dieser Form für Messverfahren, zur Analytik oder in Produktionsprozessen einzusetzen, ist ein innovativer Ansatz, der in industriellen Anwendungen zunehmend Bedeutung gewinnt. In gängigen Verfahren werden Oberflächen und biologische Mole ... mehr

  • Autoren

    Dr. Martin Vogel

    Martin Vogel, geb. 1973, hat Chemie studiert und an der Universität Münster in analytischer Chemie promoviert. Nach seiner Promotion ging er für einige Jahre an die Universität Twente in Enschede (Niederlande). Seit 2006 ist er wissenschaftlicher Mitarbeiter am Institut für Anorganische und ... mehr

    Prof. Dr. Joachim Jose

    Joachim Jose, geb. 1961, studierte Biologie an der Universität Saarbrücken, wo er promovierte. Die Habilitation erfolgte am Institut für Pharma­zeutische und Medizinische Chemie der Universität des Saarlandes. Von 2004 bis 2011 war Professor für Bioanalytik (C3) an der Heinrich-Heine-Univer ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.