q&more
Meine Merkliste
my.chemie.de  
Login  

News

Chemische Reaktionen in Echtzeit beobachten

Auf dem Weg zu synthetischen Treibstoffen

EPFL

Forscher des gemeinsamen EPFL-Empa-Labors haben ein Reaktorsystem und eine Analysemethode entwickelt, die es erstmals erlauben, die Herstellung von synthetischem Erdgas aus CO2 und nachhaltig produziertem Wasserstoff in Echtzeit zu beobachten.

10.01.2020: Die Forscher des gemeinsamen Labors der EPFL und der Empa in Sion haben ein Reaktorsystem und eine Analysemethode entwickelt, mit denen sie erstmals die Produktion von synthetischem Erdgas aus Kohlendioxid (CO2) und Wasserstoff (H2) in Echtzeit beobachten können.

Infrarot (IR)-Thermografie wird eingesetzt, um die Temperatur von Menschen und Objekten mit hoher Präzision und ohne Beeinträchtigung des zu messenden Systems zu bestimmen. Ein einzelnes Bild, das mit einer IR-Kamera aufgenommen wird, kann die gleiche Menge an Informationen wie hunderte bis Millionen von Temperatursensoren auf einmal erfassen. Darüber hinaus können moderne IR-Kameras hohe Aufnahmefrequenzen von mehr als 50 Hz erreichen, was die Untersuchung dynamischer Phänomene mit hoher Auflösung ermöglicht.

Nun haben Schweizer Wissenschaftler einen Reaktor entwickelt, der mit Hilfe von IR-Thermografie dynamische Oberflächenreaktionen sichtbar machen und mit anderen schnellen Gasanalysemethoden korrelieren kann, um ein ganzheitliches Verständnis der Reaktion unter sich schnell ändernden Bedingungen zu erhalten. Die Forschungsarbeiten wurden von Robin Mutschler und Emanuele Moioli am gemeinsamen EPFL-Empa-Labor von Andreas Züttel in Sion geleitet; die Schweizer Forscher arbeiteten mit Kollegen der Polytechnischen Universität Mailand zusammen.

Die Wissenschaftler wandten ihre Methode auf katalytische Oberflächenreaktionen zwischen Kohlendioxid (CO2) und Wasserstoff (H2) an, darunter auch die Sabatier-Reaktion. Mit dieser lässt sich synthetisches Methan aus erneuerbarer Energie durch die Kombination von atmosphärischem CO2 und H2 aus der Wasserspaltung herstellen; sie ermöglicht somit die Synthese sogenannter e-Fuels – erneuerbarer synthetischer Treibstoffe mit ähnlichen Eigenschaften wie deren fossile «Vorbilder». Auch bei der geplanten Methanherstellung im Mobilitätsdemonstrator «move» auf dem Empa-Campus in Dübendorf soll die Sabatier-Reaktion eingesetzt werden. Bei diesem chemischen Prozess wird ein Katalysator benötigt, um das relativ inerte CO2 zur chemischen Reaktion zu aktivieren.

Optimierte Reaktor- und Katalysatordesigns

Vor allem die Untersuchung dynamischer Reaktionsphänomene, die bei der Reaktionsaktivierung aus unterschiedlichen Ausgangszuständen des Katalysators auftreten, stand im Fokus der Forscher. «Die Reaktion auf dem Katalysator wird durch eine hydrierte Oberfläche begünstigt, während eine Exposition mit CO2 den Katalysator vergiftet und eine schnelle Reaktionsaktivierung verhindert», erklärt Mutschler. Und Moioli ergänzt: «Dank dieses neuen Ansatzes konnten wir neue dynamische Reaktionsphänomene sichtbar machen, die noch nie zuvor beobachtet wurden.»

In ihrer Studie zeigten die Forscher erstmals in Echtzeit, wie der Katalysator arbeitet und auf Änderungen in der Zusammensetzung der Ausgangsgase reagiert. Die Ergebnisse haben zu einem besseren Verständnis der genauen Reaktionsabläufe während der Aktivierungsphase geführt, was zu optimierten Reaktor- und Katalysatordesigns führen kann, um die Leistung dieser unter dynamischen Bedingungen ablaufenden Reaktorsysteme zu verbessern.

Dies ist von entscheidender Bedeutung, da erneuerbare Energie wie auch die Ausgangsstoffe für die Methansynthese typischerweise in wechselnden Mengen zur Verfügung stehen. Daher müssen Reaktoren, die erneuerbare Energie in synthetische Brennstoffe umwandeln, an den Betrieb unter dynamischen Bedingungen angepasst werden. Die Studie wurde durch den Schweizerischen Nationalfonds (SNF) unterstützt.

Originalveröffentlichung:
R Mutschler, E Moioli, K Zhao, L Lombardo, E Oveisi, A Porta, L Falbo, CG Visconti, L Lietti, A Züttel; "Imaging catalysis: Operando investigation of the CO2 hydrogenation reaction dynamics by means of infrared thermography"; ACS Catalysis; 2019

Fakten, Hintergründe, Dossiers

  • chemische Reaktionen
  • Echtzeit-Beobachtungen
  • synthetische Kraftstoffe

Mehr über Empa

  • News

    Das programmierte Material

    Lassen sich Eigenschaften von Komposit-Materialien vorausberechnen? Empa-Spezialisten beherrschen das und helfen damit, Forschungsziele schneller zu erreichen. Dies führt zum Beispiel zu ­besseren Recyclingverfahren und elektrisch leitenden Kunststoffen für die Solarindustrie. Ali Gooneie s ... mehr

    Quantenkaskaden-Laser misst Ethanol

    Quantenkaskaden-Laser können kleinste Moleküle hochpräzise messen. Bei grösseren Gasmolekülen allerdings versagt die Technologie – bis jetzt! Forscher der Empa haben es geschafft, Ethanol, ein wichtiges organisches Molekül, mit Hilfe eines solchen Lasers zu quantifizieren. In Zusammenarbeit ... mehr

    Brandschutz aus Altpapier

    Empa-Wissenschaftler haben gemeinsam mit der Isofloc AG einen Dämmstoff aus Altpapier entwickelt, der sich für vorfabrizierte Holzbauelemente auch in mehrgeschossigen Holzhäusern eignet und die Konstruktion wirksam vor Feuer schützt. Das Bindemittel ist eine für Mensch, Tier und Umwelt unbe ... mehr

Mehr über Ecole Polytechnique Fédérale de Lausanne

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.