03.01.2020 - Universität Basel

2D-Materialien: Anordnung der Atome in Silicen gemessen

Silicen besteht aus einer einzigen Schicht von Siliziumatomen. Im Unterschied zum ultraflachen Graphen aus Kohlenstoff zeigt Silicen an der Oberfläche Unebenheiten, die sich auf die elektronischen Eigenschaften des Materials auswirken. Physiker der Universität Basel konnten diese gewellte Struktur nun präzise ermitteln. Ihr Verfahren eignet sich auch für die Analyse anderer zweidimensionaler Materialien, berichten sie in der Fachzeitschrift PNAS.

Zweidimensionale Materialien stehen seit der experimentellen Herstellung von Graphen im Zentrum der Materialforschung. Ähnlich wie mit Kohlenstoff lässt sich auch aus Silizium eine einzelne Schicht aus wabenförmig angeordneten Atomen herstellen. Das Material namens Silicen zeigt jedoch im Gegensatz zu Graphen eine atomare Rauigkeit, da manche Atome höher liegen als andere.

Silicen nicht ganz flach

Dem Forscherteam um Professor Ernst Meyer vom Departement Physik und Swiss Nanoscience Institute der Universität Basel ist es nun gelungen, diese winzigen Höhenunterschiede quantitativ darzustellen und die unterschiedliche Anordnung der Atome zu erfassen, die sich in einem Bereich von unter einem Ångström bewegt – das entspricht dem zehnmillionsten Teil eines Millimeters.

«Wie benutzen dazu Tieftemperatur-Rasterkraftmikroskopie mit einer Kohlenmonoxid-Spitze», erläutert Dr. Rémy Pawlak, der bei den Experimenten federführend war. Die Kraftspektroskopie erlaubt die quantitative Bestimmung von Kräften zwischen Probe und Spitze. Damit lässt sich die Höhe im Bezug zur Oberfläche erfassen und einzelne Atome können chemisch identifiziert werden. Die Messwerte weisen eine sehr gute Übereinstimmung mit Simulationen auf, die von Partnern am Instituto de Ciencia de Materiales de Madrid (ICMM) durchgeführt wurden.

Andere elektronische Eigenschaften

Diese Unebenheit, das sogenannte «Buckling», hat einen Einfluss auf die elektronischen Eigenschaften des Materials. Im Gegensatz zu Graphen, das als hervorragender Leiter bekannt wurde, verhält sich Silicen daher auf einer Silberoberfläche eher wie ein Halbleiter. «Die perfekte Wabenstruktur ist bei Silicen gestört. Das muss nicht unbedingt ein Nachteil sein, da sich so interessante Quantenphänomene wie der Quanten-Spin-Hall-Effekt ausbilden könnten», kommentiert Ernst Meyer.

Die Methode der Basler Forscher erlaubt neue Einblicke in die Welt der zweidimensionalen Materialien und in den Zusammenhang zwischen Struktur und elektronischen Eigenschaften.

Fakten, Hintergründe, Dossiers

  • Universität Basel
  • Silicen
  • Tieftemperatur-Rast…

Mehr über Universität Basel

  • News

    Neue Substanzklasse für Redox-Reaktionen

    Ein interdisziplinäres Forscherteam stellt eine neue Klasse chemischer Verbindungen vor, die reversibel oxidiert und reduziert werden kann. Die sogenannten «Pyrazinacene» sind einfache, stabile Verbindungen, die aus einer Reihe stickstoffhaltiger Kohlenstoffringe bestehen. Sie eignen sich f ... mehr

    Die künstliche Zelle auf einem Chip

    Forschende der Universität Basel haben ein exakt kontrollierbares System entwickelt, um biochemische Reaktionskaskaden in Zellen nachzuahmen. Sie nutzen die Mikrofluid-Technik um Mini-Reaktionscontainer aus Polymeren herzustellen, die sie mit den gewünschten Eigenschaften ausstatten. Nützli ... mehr

    Wie sich Bakterien an Fasern im Darm festhalten

    Forscher haben den molekularen Mechanismus aufgeklärt, mit dem sich Bakterien an Zellulosefasern im Darm anheften. Indem sie auf zwei verschiedene Arten an die Fasern binden, können sie den Scherkräften im menschlichen Körper standhalten. Das Forschungsteam der Universität Basel und der ETH ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: