q&more
Meine Merkliste
my.chemie.de  
Login  

News

Synchronschwimmer unter dem Mikroskop

© Max Planck Institute for terrestrial Microbiology/Colin

Kollektive Bewegung in Bakteriensuspensionen. Rechts: Typische Momentaufnahme des Geschwindigkeitsfeldes, gemessen in einer hochdichten Zellsuspension.

© Max Planck Institute for terrestrial Microbiology/Colin

Kollektive Effekte beeinträchtigen die chemotaktische Navigation in der Umwelt. Während Bakterien in der Isolation durchaus in der Lage sind, physikalisch-chemische Gradienten zu messen und sich zu orientieren, verhindern kollektive Umorientierungen bei hoher Zelldichte die Erfüllung dieser lebenswichtigen Zellfunktion.

20.12.2019: Nicht nur Vögel, Fische und sogar Menschenmengen zeigen kollektive Bewegungsmuster, auch schwimmende Bakterien bilden Ströme und Wirbel, wenn ihre Zelldichte eine bestimmte Größe übersteigt. Forscher des Max-Planck-Instituts für terrestrische Mikrobiologie in Marburg analysieren, wie sich solche Muster bilden können.

Einzelne Bakterienzellen bewegen sich in relativ geraden Strecken vorwärts, unterbrochen durch kurze Umorientierungen (Taumeln). Beim Schwimmen messen die Bakterien mit einem minimalen Geruchssinn die Veränderungen ihrer chemischen Umwelt (z.B. der Nährstoffkonzentration) und verändern ihr Schwimmverhalten. Durch Verlängern der Läufe in Richtung günstiger und Verkürzen in Richtung ungünstiger Bedingungen finden sie ihren Weg zu den besseren Lebensbedingungen. Das Proteinnetzwerk, das dieses chemotaktische Verhalten steuert, ist eines der am besten untersuchten biologischen Signalverarbeitungssysteme. Über ein chemisch kodiertes Kurzzeitgedächtnis vergleicht das Bakterium die aktuellen Bedingungen mit denen, die einige Sekunden zuvor erlebt wurden, und entscheidet danach, Läufe zu verlängern oder zu verkürzen.

Obwohl die Chemotaxis typischerweise als Einzelzellverhalten gesehen wird, führt sie auch zu kollektiven Verhaltensweisen: bei lokaler Zusammenlagerung oder Wanderung in Form von Bändern führt die chemotaktische Reaktion auf selbst erzeugte Gradienten von Lockstoffen zu einer erhöhten lokalen Zelldichte.

In dichten Populationen überwiegt kollektive Bewegung

Erreicht die gesamte Zelldichte einen bestimmten Punkt, zeigt sich eine grundsätzlich andere Dynamik: Bänder und Wirbel von Bakterienzellen entstehen und lösen sich wieder auf. "Trotz des häufigen Auftretens kollektiver Motilität war bislang nur sehr wenig darüber bekannt, wie physikalische Wechselwirkungen die chemotaktische Navigation der Bakterien beeinflussen,“ erklärt Projektleiter Remy Colin. Diese Wissenslücke ist zum Teil auf die Schwierigkeit zurückzuführen, die Dynamik von Zellen in einer dichten Suspension zu messen. "Glücklicherweise wurden in den letzten Jahren neue Bildanalysemethoden entwickelt oder an bakterielle Systeme angepasst", sagt Victor Sourjik, Leiter der Abteilung für Systeme und Synthetische Biologie. "Das gab uns die Möglichkeit, Intensitätsschwankungen oder Musterverschiebungen zu nutzen, um das Schwimmverhalten und die Chemotaxis in Bakterienpopulationen zu charakterisieren."

Um sowohl die kollektive Dynamik als auch die chemotaktische Reaktion von Populationen von E. coli-Zellen bei unterschiedlicher Zelldichte zu messen, analysierten die Max-Planck-Forscher das Bakterienschwimmen in kontrollierten Gradienten eines chemischen Lockstoffs mit Hilfe neuer Bildanalysemethoden.

Kollektive Neuausrichtung beeinträchtigt Chemotaxis

Die experimentellen Ergebnisse zeigten, dass die die kollektive Bewegung die Chemotaxis nach einem Maximum bei mittleren Dichten bei zunehmender Zelldichte stark reduziert. Die kollektiven Neuausrichtungen der Bakterien scheinen den chemosensorischen Mechanismus zu stören. "Während die Zelle schwimmt, überwacht sie innerhalb weniger Sekunden die Veränderung der Konzentration attraktiver chemischer Stoffe, um zu entscheiden, ob sie innehalten soll. Wenn sich in dieser Zeit die Richtung, in der die Zelle schwimmt, signifikant geändert hat, wird die bakterielle Chemotaxis ineffizient", erklärt Remy Colin. "Als wir die experimentell beobachtete kollektive Bewegung mit numerischen Simulationen verglichen, stellten wir fest, dass die Wirkung des direkten Kontaktes zwischen den Bakterien nur sekundär ist. Die wichtigste Rolle bei der Entstehung kollektiver Muster spielen die hydrodynamischen Wechselwirkungen aufgrund der Flüssigkeitsverdrängung. Diese Frage wurde unter Physikern, die sich für kollektive Verhaltensweisen interessieren, kontrovers diskutiert."

Der Einfluss der physikalischen Wechselwirkungen auf das chemotaktische Verhalten hat mehrere wichtige Konsequenzen für das Verhalten von Bakterien bei hoher Zelldichte, denn er limitiert die chemotaktische Anhäufung von Bakterien in der Nähe von Nahrungsquellen. Das sollte einerseits eine wichtige Rolle für die Ressourcenverteilung innerhalb der Bakterienpopulationen und deren Selbstorganisation spielen; andererseits wird diese grundlegende Untergrabung der Chemotaxis auch bei Zelldichten beobachtet, wie sie für das Schwärmen typisch sind. Dabei handelt es sich um eine Fortbewegungsart, die viele Bakterien nutzen, um sich schnell auf Oberflächen zu verbreiten, zum Beispiel während einer Infektion. Die neuen Ergebnisse deuten darauf hin, dass die chemotaktische Navigation innerhalb eines Schwarmes nahezu unmöglich ist ohne spezifische Gegenmechanismen – diese gilt es noch aufzudecken.

Originalveröffentlichung:
Colin, R.; Drescher, K.; Sourjik, V.; "Chemotactic behaviour of Escherichia coli at high cell density"; Nature Communications; 10, 5329 (2019)

Fakten, Hintergründe, Dossiers

  • Bakterien
  • Chemotaxis
  • Bildanalysen

Mehr über Max-Planck-Institute für terrestrische Mikrobiologie

  • News

    Krankheitserreger aus dem Meer

    Im Küstenbereich der Meere lebt das Bakterium Vibrio parahaemolyticus, einer der Hauptverursacher von Magen-Darm-Infektionen beim Menschen. Ein Forscherteam um Simon Ringaard vom Max-Planck-Institut für terrestrische Mikrobiologie in Marburg untersucht, wie sich die Bakterien an die wechsel ... mehr

Mehr über Max-Planck-Gesellschaft

  • News

    Design zuverlässiger nano- und mikroelektronischer Systeme

    Silizium verhält sich spröde wie Glas, dennoch ist es das Material auf das wir uns täglich in einer Vielzahl von wichtigen Anwendungen verlassen - egal ob es sich um die Elektronik in unserem Handy handelt, die Datenspeicher in unseren Laptops oder wichtige Sensoren im Auto. Seit kurzem hat ... mehr

    Bakterien hinterlassen Signatur in Darmkrebszellen

    Manche Bakterien verursachen Schäden im Erbgut infizierter Zellen, die zu Krebs führen könnten. Dass die Mikroben aber tatsächlich die Ursache einer Krebserkrankung sind, ist schwer nachzuweisen, da Krebs oft erst Jahre später ausbricht. Forscher suchen daher nach einer Signatur, die Bakter ... mehr

    Umweltfreundliche Produktion von Mandelsäure

    Manchmal sind potenziell nützliche Enzyme nicht leicht zu erkennen, weil manche ihrer enzymatischen Fähigkeiten außerhalb des natürlichen und damit bekannten Wirkbereiches liegen. Eine solche Entdeckung machte ein Forscherteam des Max-Planck-Instituts für terrestrische Mikrobiologie unter d ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.