q&more
Meine Merkliste
my.chemie.de  
Login  

News

KI-gesteuerte Klassifizierung einzelner Blutzellen

Neue Methode unterstützt Ärzte bei der Leukämiediagnostik

© Helmholtz Zentrum München / Carsten Marr

Deep-Learning-Algorithmen der KI analysieren Proben auf automatisierte und standardisierte Weise. Links: Klassifizierung menschlicher Experten. Rechts: Wichtige Pixel für die KI-Analyse.

14.11.2019: Erstmals zeigen Forscher des Helmholtz Zentrums München und des Klinikums der Ludwig-Maximilians-Universität München (LMU), dass Deep-Learning-Algorithmen bei der Klassifizierung von Blutproben von Patienten mit akuter myeloischer Leukämie (AML) eine vergleichbare Leistung erbringen wie Fachleute. Die Proof-of-Concept-Studie des Teams ebnet den Weg für eine automatisierte, standardisierte und allgemein verfügbare Analyse von Proben in naher Zukunft.

Zur Diagnose von Krankheiten werden in medizinischen Labors und Kliniken täglich Millionen einzelner Blutzellen ausgewertet. Der Großteil dieser repetitiven Auswertungen wird noch immer manuell vorgenommen. Ausgebildete Zytologen untersuchen die Zellen in gefärbten Blutausstrichen und teilen diese in etwa 15 verschiedene Kategorien ein. Dieser Klassifizierungsprozess ist anfällig für Qualitätsschwankungen und erfordert die Anwesenheit und das Fachwissen eines Experten.

Um einzelne Blutzellen effizienter auswerten zu können entwickelte ein Team aus Forschern des Helmholtz Zentrums München und des Klinikums der LMU zu diesem Zweck ein neuronales Deep-Learning-Netzwerk. Dieses wurde mit fast 20.000 Einzelbildern trainiert, um Zellen selbstständig klassifizieren zu können. Das Forschungsteam rund um Leiter Dr. Carsten Marr und den Medizindoktoranden Dr. Christian Matek vom Institut für Computational Biology am Helmholtz Zentrum München sowie Prof. Dr. Karsten Spiekermann und Simone Schwarz von der Medizinischen Klinik und Poliklinik III des Klinikums der LMU nutzte dazu Bilder, die aus Blutausstrichen von 100 Patienten mit der aggressiven Blutkrankheit AML und 100 Kontrollen extrahiert wurden. Diese neue, automatisierte Lösung wurde anschließend bewertet, indem ihre Genauigkeit mit der von menschlichen Experten verglichen wurde. Das Ergebnis zeigte, dass das von künstlicher Intelligenz (KI)-gesteuerte Verfahren diagnostisch relevante Blasten (Vorläuferzellen der weißen Blutkörperchen, die normalerweise nur im Knochenmark zu finden sind) mindestens so gut identifiziert wie ein ausgebildeter Zytologe.

Angewandte Forschung durch KI und Big Data

Deep-Learning-Algorithmen für die Bildverarbeitung benötigen zweierlei: eine geeignete neuronale Netzwerkarchitektur mit tausenden von Parametern, sowie eine ausreichend große Menge an Trainingsdaten. Bislang lag kein großer digitalisierter Datensatz von Blutzellen vor, obwohl diese Proben in Kliniken tagtäglich verwendet werden. Die Forschungsgruppe am Helmholtz Zentrum München hat nun den ersten großen Datensatz dieser Art zur Verfügung gestellt. Derzeit arbeiten Marr und sein Team eng mit der Medizinischen Klinik und Poliklinik III des Klinikums der LMU und einem der größten europäischen Leukämie-Labore, dem Münchner Leukämie-Labor (MLL), zusammen, um Hunderte von Blutausstrichen von Patienten zu digitalisieren.

„Um unseren Lösungsansatz in der Praxis umzusetzen, muss die Digitalisierung von Blutausstrichen von Patienten zur Routine werden. Algorithmen müssen mit Proben aus verschiedenen Quellen trainiert werden, um die inhärente Heterogenität bei der Aufbereitung und Färbung der Proben zu lernen“, erklärt Marr. „In unserer Publikation konnten wir beweisen, dass Deep-Learning-Algorithmen eine ähnliche Leistung erzielen können wie Zytologen. In einem nächsten Schritt werden wir untersuchen, wie gut andere Krankheitsbilder, beispielweise genetische Mutationen oder Translokationen, mit dieser neuen KI-gesteuerten Methode vorhergesagt werden können.“

Diese Arbeit ist ein Beispiel dafür, welches Potenzial dem Einsatz künstlicher Intelligenz in der angewandten Forschung zukommt. Sie entstand aus einer Fortführung der Forschungsarbeiten des Helmholtz Zentrums München zur Klassifizierung einzelner Zellen in Blutstammzellen (Buggenthin et al., Nature Methods, 2017), die 2018 mit dem Erwin-Schrödinger-Preis der Helmholtz-Gemeinschaft ausgezeichnet wurden. Unterstützt wurde die Studie vom SFB 1243 der Deutschen Forschungsgemeinschaft (DFG) sowie durch ein Promotionsstipendium der Deutschen José-Carreras-Leukämie-Stiftung an Dr. Christian Matek.

Originalveröffentlichung:
Matek, C. et al.; "Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks"; Nature Machine Intelligence; 2019

Fakten, Hintergründe, Dossiers

  • Deep Learning
  • akute myeloische Leukämie
  • Blutanalyse
  • künstliche Intelligenz

Mehr über Helmholtz Zentrum München

  • News

    Neue Wirkstoffkombination könnte Diabetes-Remission ermöglichen

    Eine der Ursachen von Diabetes könnte in der Dedifferenzierung von insulinproduzierenden Betazellen in den Langerhans´schen Inseln des Pankreas liegen, also dem Verlust der Zellidentität. Ob dedifferenzierte Zellen ein Ansatzpunkt für eine mögliche Betazellregeneration sind, war bisher unkl ... mehr

    Grenzenloses Potenzial: Totipotent-ähnliche Zellen auf neue Weise erzeugt

    Totipotenz wird für die Forschung und künftige medizinische Anwendungen immer wichtiger und das Interesse an effizienten Methoden, um totipotent-ähnliche Zellen in der Petrischale erzeugen zu können, ist groß. Eine Forschungsgruppe des Helmholtz Zentrums München fand nun heraus, dass bestim ... mehr

    Durchbruch in der Mikroskopie: Biomolekülen beim Tanzen zusehen

    Die simultane Beobachtung von dynamischen Veränderungen und Wechselwirkungen von Biomolekülen wie Kohlenhydraten und Lipiden in lebenden Zellen ist eine große Herausforderung in der Biomedizin, birgt aber zugleich ein großes, bisher unerreichtes Forschungspotential. Eine neuartige, markerfr ... mehr

  • q&more Artikel

    Herausforderung

    In nahezu allen Bereichen der Umwelt­analytik, aber auch in der Produktqualitätskontrolle, Life-Sciences, biomedizinischen oder pharmazeutischen Forschung hat sich in der Vergangenheit die Zahl der Analysen ständig erhöht. Analytische Untersuchungen dienen dem Schutz der Gesundheit von Mens ... mehr

  • Autoren

    Prof. Dr. Bernhard Michalke

    Bernhard Michalke ist Leiter der Forschungsgruppe „Element- und Elementspeziesanalytik“ und der „Zentralen Anorganischen Analytik“ am Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt. Prof. Michalke studierte Biologie an der Technischen Universität München u ... mehr

Mehr über LMU

  • News

    Unverwechselbarer molekularer Fingerabdruck

    In Organismen zirkulieren die verschiedensten Arten von Molekülen. Der Stoffwechsel lässt in den Zellen ständig verschiedenste neue Moleküle entstehen, die auch in die Umgebung, etwa in das Blut, abgegeben werden. Eines der großen Ziele der Biomedizin ist es, diesen Molekülmix detailliert z ... mehr

    Neuer Algorithmus erkennt sogar kleinste Krebsmetastasen im ganzen Mauskörper

    Forscher des Helmholtz Zentrum München, der Ludwig-Maximilians-Universität München (LMU) und der Technischen Universität München (TUM) haben einen Algorithmus entwickelt, der automatisiert Metastasen erkennt. Die neue Technologie findet sogar einzelne streuende Krebszellen im gesamten Körpe ... mehr

    Fünfmal effektivere Formaldehyd-Herstellung mit Machine Learning

    Umwelt- und ressourcenschonende Verfahren zur industriellen Produktion chemischer Substanzen sind gesucht. LMU-Forscher haben eine neue Methode entwickelt, die dazu einen wichtigen Beitrag leisten kann. Formaldehyd gehört zu den wichtigsten Grundstoffen der chemischen Industrie und dient a ... mehr

  • q&more Artikel

    Code erkannt

    Der genetische Code codiert alle Informationen, die in jeder Zelle für die ­korrekte Funktion und Interaktion der Zelle mit der Umgebung notwendig sind. Aufgebaut wird er aus vier unterschiedlichen Molekülen, den so genannten ­kanonischen Watson-Crick-Basen Adenin, Cytosin, Guanin und Thymi ... mehr

  • Autoren

    Prof. Dr. Thomas Carell

    Thomas Carell, Jg. 1966, studierte Chemie und fertigte seine Doktorarbeit am Max-Planck Institut für Medizinische Forschung unter der Anleitung von Prof. Dr. Dr. H. A. Staab an. Nach einem Forschungs-aufenthalt in den USA ging er an die ETH Zürich in das Laboratorium für Organische Chemie u ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.