25.10.2019 - Universität Zürich

Antibiotika mit neuartiger Wirkung entdeckt

Viele lebensbedrohliche Bakterien werden zunehmend resistent gegen Antibiotika. Forschende der Universität Zürich und der Polyphor AG haben eine neue Antibiotikaklasse entdeckt, die gegen mehrere Bakterien wirksam sind und über einen einzigartigen Wirkmechanismus verfügen. Sie blockieren den Aufbau der äusseren Membran und töten so gramnegative Bakterien effektiv ab.

Die rasche Verbreitung von Antibiotikaresistenzen ist ein weltweites Problem. Nach Angaben der Weltgesundheitsorganisation (WHO) stellen insbesondere gramnegative Bakterien, die gegen Carbapenem- und Cephalosporin-Antibiotika resistent sind, eine wachsende Bedrohung für die menschliche Gesundheit dar. Diese Erreger können schwere und oft lebensbedrohliche Infektionen wie Lungen- oder Hirnhautentzündungen, Wundinfekte oder Blutvergiftungen verursachen. Die letzte neue Klasse von Antibiotika, die gegen diese Mikroorganismen auf den Markt kam – die Fluorchinolone – stammt aus den 1960er-Jahren. Neue Antibiotika mit neuartigen Wirkmechanismen gegen gramnegative Bakterien werden dringend benötigt, zumal auch Resistenzen gegen das letzte Reserve-Antibiotikum Colistin weltweit zunehmen.

Neuartige Antibiotika gegen gefährliche Bakterien

Schweizer Forscherteams unter der gemeinsamen Leitung der Universität Zürich (UZH) und der Polyphor AG haben eine neue Familie von synthetischen Antibiotika, die gegen diverse gramnegative Mikroben wirken, entdeckt und charakterisiert. «Die neuen Antibiotika interagieren mit Proteinen der Aussenmembran von gramnegativen Bakterien», sagt John Robinson vom Institut für Chemie der UZH, einer der Co-Leiter der Studie. «Nach unseren Ergebnissen binden die Antibiotika einerseits an fettähnliche Membrankomponenten, den sogenannten Lipopolysacchariden, und andererseits an das Membranprotein BamA, das für den Aufbau der äusseren Hülle von gramnegativen Bakterien essenziell ist», ergänzt Robinson.

Aufbau der äusseren Membran wird blockiert

BamA ist der Hauptbestandteil des sogenannten ß-Faltkomplexes (BAM), der für die Synthese der Aussenmembran unerlässlich ist. Nachdem die Antibiotika an dieses Protein binden, wird die Bakterienmembran zerstört, und die Zellen platzen. Die Aussenmembran schützt Bakterien etwa vor toxischen Umweltfaktoren und Antibiotika. Zudem ist sie für die Aufnahme und den Export von Nährstoffen und Signalmolekülen verantwortlich. «Trotz ihrer Bedeutung zielen keine der bisher klinisch eingesetzten Antibiotika auf Schlüsselproteine, die für die Biogenese der Aussenmembran erforderlich sind», sagt Robinson.

Leitmolekül in präklinischen Studien

Das Forschungsprojekt wurde in enger Zusammenarbeit mit der Polyphor AG durchgeführt, einem ehemaligen UZH-Start-up-Unternehmen, das 1996 gegründet wurde. Das biopharmazeutische Unternehmen mit Sitz in Allschwil plant nun, eine der Substanzen in die klinische Prüfung am Menschen zu bringen. «POL7306, ein erstes Leitmolekül der neuartigen Antibiotika-Klasse, befindet sich derzeit in der präklinischen Entwicklung», sagt Daniel Obrecht, Chief Scientific Officer bei Polyphor und Co-Studienleiter.

  • Anatol Luther et. al.; "Chimeric Peptidomimetic Antibiotics Against Gram-Negative Bacteria"; Nature; 23 October 2019.

Fakten, Hintergründe, Dossiers

  • Antibiotika
  • Gram-negative Bakterien
  • Antibiotikaresistenzen
  • Cephalosporine
  • Carbapenem
  • Colistin

Mehr über Universität Zürich

  • News

    Fettstoffwechsel steuert Gehirnentwicklung

    Ein Enzym des Fettstoffwechsels steuert die Aktivität von Hirnstammzellen und die lebenslange Gehirnentwicklung. Funktioniert das Enzym nicht korrekt, schränkt dies die Lern- und Gedächtnisleistung bei Menschen und Mäusen ein, wie Forschende der Universität Zürich ermittelt haben. Die Regul ... mehr

    Neu entdecktes Protein gibt Signal für Virusinfektion

    Forscher der Universität Zürich haben erstmals ein Protein entdeckt, das die Infektion von menschlichen Zellen durch Adenoviren ermöglicht. Das Eiweiss Mib1 gibt dem Virus das Signal, die DNA zu enthüllen und in den Zellkern zu schleusen. Die Blockierung des Proteins könnte helfen, die für ... mehr

    Medikamentenresistenz: Transportproteine vom Transport abhalten

    Bestimmte Membranproteine sind darauf spezialisiert, Moleküle aus Zellen zu transportieren – ein Problem für die Wirksamkeit von Krebsmedikamenten und Antibiotika. Mit einem künstlich hergestellten Antikörperfragment hat ein internationales Forschungsteam den Transportmechanismus eines Memb ... mehr

  • q&more Artikel

    Vom Nachtschwärmer zur Lerche

    Die meisten Menschen kommen aufgrund ihrer Biochronologie entweder als Lerche (Frühaufsteher) oder Eule (Morgenmuffel) zur Welt und in der Pubertät entwickeln sie sich zum Nachtschwärmer. Mit dem 20. Lebensjahr tritt dann eine Wende ein und der Schlaf- und Wachrhythmus verschiebt sich konti ... mehr

  • Autoren

    Dr. Steven A. Brown

    Steven B. Brown studierte Biochemie am Harvard College, Cambridge, Massachusetts, USA. 1997 promovierte er im Fachgebiet Biological Chemistry and Molecular Pharmacology, Harvard University, Cambridge, Massachusetts, USA. Von 1998-2005 war er als Postdoc am Institut für Molekulare Biologie a ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: