q&more
Meine Merkliste
my.chemie.de  
Login  

News

Rezeptorkomplexe am Fließband

Zusammenbau von Glutamat-Rezeptoren und dessen Bedeutung für die Gedächtnisbildung entschlüsselt

Bernd Fakler

Der schrittweise, kontrollierte Zusammenbau von AMPA-Rezeptoren im endoplasmatischen Retikulum von Nervenzellen ist entscheidend für die Fähigkeit zum Lernen und zur Gedächtnisbildung.

15.10.2019: Die schnelle Kommunikation von Nervenzellen im Gehirn hängt, ebenso wie die Fähigkeit zu lernen, fundamental von Neurotransmitter-Rezeptoren in den Kontaktstellen von Neuronen, den Synapsen, ab. Die wichtigsten Rezeptoren des Säugergehirns sind Glutamat-Rezeptoren des AMPA-Typs, die das zur Kommunikation notwendige elektrische Signal erzeugen. Ihre Anzahl wird durch den Grad der Aktivität einer Synapse moduliert: Beim Lernen erhöht sie sich, wodurch die Signalübertragung zuverlässiger funktioniert und die Synapse auf langdauernde Nutzung im Sinne von Gedächtnisbildung angelegt wird. Entscheidende Voraussetzung für diese synaptische Plastizität ist der effiziente Zusammenbau der AMPA-Rezeptoren aus verschiedenen Proteinuntereinheiten im endoplasmatischen Retikulum (ER) von Nervenzellen – ein Prozess, über den bislang wenig bekannt ist.

Freiburger Neurobiologen um Prof. Dr. Bernd Fakler vom Institut für Physiologie haben in Zusammenarbeit mit Kollegen der Universität Frankfurt und des Max-Planck-Instituts für medizinische Forschung in Heidelberg erstmals gezeigt, dass AMPA-Rezeptoren wie auf einem Fließband schrittweise aus Haupt- und Hilfsuntereinheiten zusammengesetzt werden. Die einzelnen Bauschritte werden von verschiedenen Proteinen und Proteinkomplexen des ER ausgeführt. Wird dieser Zusammenbau durch Mutationen in den Fließbandelementen beim Menschen oder durch deren gezielte genetische Inaktivierung – dem Knock-out – bei Mäusen gestört, kommt es zu massiven Einschränkungen in der synaptischen Signalübertragung sowie der Fähigkeit zu lernen. Umgekehrt führt die Steigerung der Rezeptorherstellung durch Überproduktion der Fließbandproteine zu erhöhter Plastizität der Synapsen. Diese Ergebnisse haben die Wissenschaftler in der Fachzeitschrift Neuron veröffentlicht.

Unter Anwendung hochauflösender Proteomanalyse-Techniken haben die Forscher Proteine in den ER-Membranen von Neuronen identifiziert, die für den Zusammenbau funktionsfähiger AMPA-Rezeptoren aus vier porenbildenden Untereinheiten und vier Hilfsuntereinheiten notwendig sind: Der erste Baustein, die Proteine ABHD6 und PORCN, schützt die einzelnen porenbildenden Untereinheiten vor vorzeitigem Abbau. Der zweite Baustein, ein Komplex aus den Proteinen FRRS1l und CPT1c, fügt vier dieser Einzelbausteine zu einem Rezeptor-Kanal zusammen und bereitet die Bindung der vier Hilfsuntereinheiten, der Cornichon- oder TARP-Proteine, vor. Dieser letzte Arbeitsschritt löst dann den FRRS1l-CPT1c Komplex ab und ermöglicht so den Export der funktionsfähigen AMPA-Rezeptoren aus dem ER und ihren Transport in die Synapsen.

Die einzelnen Arbeitsschritte dieses Fließbands sind exakt aufeinander abgestimmt und auf den effizienten Zusammenbau der Rezeptoren hin optimiert. Wird die Fließbandarbeit gestört, etwa durch mutationsbedingten Funktionsverlust des FRRS1l-Proteins, führt dies beim Menschen zu schwersten Funktionsstörungen des Gehirns, was die Forscher schon in einer 2017 publizierten Arbeit beschrieben haben: Alle Patienten zeigten stark eingeschränkte intellektuelle Fähigkeiten und Intelligenzquotienten unter 40, verzögerte oder fehlende Sprachentwicklung sowie eine erhöhte Neigung zu epileptischen Anfällen.

Das entschlüsselte Fließband ist zwar auf AMPA-Rezeptoren spezialisiert, doch die Forscher vermuten, dass der Prozess der schrittweisen Fertigung beispielgebend ist für andere Membranproteine und -proteinkomplexe, die an der Informationsverarbeitung im Gehirn oder der Erregungsausbreitung sowie am Stofftransport in anderen Zellen beteiligt sind.

Originalveröffentlichung:
Schwenk, S. Boudkkazi, M. Kocylowski, A. Brechet, G. Zolles, T. Bus, K. Costa, W. Bildl, A. Kollewe, J. Jordan, J. Bank, W. Bildl, R. Sprengel, A. Kulik, J. Roeper, U. Schulte, and B. Fakler: "An ER assembly line of AMPA-receptors controls excitatory neurotransmission and its plasticity"; Neuron; 2019

Fakten, Hintergründe, Dossiers

  • Gehirn
  • Neurotransmitter
  • Synapsen
  • Neuronen
  • Nervenzellen
  • Rezeptoren
  • Glutamat-Rezeptor
  • Gedächtnisbildung
  • Proteomanalyse

Mehr über Uni Freiburg

  • News

    Eine Frage der Zeit: Wie das Immunsystem körpereigene von krankheitserregenden Molekülen unterscheidet

    Ein Team um die Freiburger Biologen Prof. Dr. Wolfgang Schamel und Prof. Dr. Wilfried Weber hat in einem Experiment die Dauer der Wechselwirkung eines Proteins mit T-Zellen, weißen Blutkörperchen, kontrolliert und damit gezeigt, wie das Immunsystem krankheitserregende von körpereigenen Mole ... mehr

    Verkehrskontrolle für Zellen

    Zellen im menschlichen Körper können sich unterschiedlich verhalten, abhängig von den mechanischen Eigenschaften des Gewebes, das sie umgibt. Dies gilt besonders für Immunzellen, die durch den Körper wandern, dabei auf Gewebe mit unterschiedlichen Eigenschaften treffen und darauf angemessen ... mehr

    Stammzellen regulieren ihr Schicksal, indem sie ihre Steifigkeit verändern

    Bei erwachsenen Menschen finden sich so genannte Mesenchymale Stammzellen (MSCs) hauptsächlich im Knochenmark. MSC spielen eine wichtige Rolle bei der Reparatur beschädigter Organe. Die Umwandlung einer einzelnen MSC in ein komplexes Gewebe wie Knorpel startet mit dem Zusammenschluss dieser ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.