q&more
Meine Merkliste
my.chemie.de  
Login  

News

Ultraschneller Blick in die Photochemie der Atmosphäre

Was passiert mit Molekülen an Oberflächen von nanoskopischen Aerosolen, wenn sie unter Lichteinfluss geraten?

Alexander Gelin

Ein intensiver Laserpuls (rot) trifft auf ein Nanoteilchen aus Glas und interagiert dabei mit Molekülen an dessen Oberfläche. Daraufhin werden Wasserstoffionen herausgelöst.

15.10.2019: Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf den Einfluss von Strahlung. Einen dieser Prozesse hat das Team um Professor Matthias Kling und Dr. Boris Bergues vom Labor für Attosekundenphysik (LAP) der Ludwig-Maximilians-Universität (LMU) und des Max-Planck-Instituts für Quantenoptik (MPQ) genauer unter die Lupe genommen. Die Laserphysiker haben erkundet, was passiert, wenn Moleküle, die an den Oberflächen von Nanoteilchen haften, mit Licht in Berührung kommen. Lichtinduzierte molekulare Prozesse auf Nanoteilchen spielen eine wichtige Rolle in der Atmosphäre und können nicht zuletzt unser Klima beeinflussen.

Der Nanokosmos ist ständig in Bewegung. Die Natur wird dirigiert vom Wechselspiel zwischen Licht und Materie. Licht trifft auf Teilchen und setzt Reaktionen in Gang. Elektronen wechseln ihre Position, Atome verändern sich und Moleküle werden umgebaut. Auf den Oberflächen von Nanoteilchen in der Atmosphäre können solche Prozesse erheblich beschleunigt werden. Das ist entscheidend für die Photochemie in der Atmosphäre und damit für unsere Gesundheit und das Klima. Einen solchen lichtgetriebenen, molekularen Prozess auf Aerosolen hat nun das Team um Prof. Matthias Kling und Dr. Boris Bergues vom Labor für Attosekundenphysik der LMU und des MPQ detailliert beobachtet. Die Wissenschaftler haben eine neue Methode, die Reaktions-Nanoskopie, entwickelt. Mit ihrer Hilfe untersuchten sie, wie sich Ethanol- und Wassermoleküle an der Oberfläche von Nanoteilchen aus Glas verhalten, wenn sie unter den Einfluss von starker Lichtstrahlung geraten.

Die Forscher schickten wenige Femtosekunden lange Laserpulse auf die kugelförmigen Teilchen. Eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde (10-15 Sekunden). Mit der Reaktions-Nanoskopie zeichneten die Wissenschaftler erstmals in drei Dimensionen mit Nanometer Auflösung auf, was bei dieser ultrakurzen Interaktion passiert. „Wir beobachteten, wie sich vor allem Wasserstoffteilchen aus den Molekülen an der Oberfläche der Nanoteilchen lösten und von der Oberfläche wegbeschleunigt wurden. Dieser Prozess bildet die Grundlage für die hohe räumliche Auflösung unserer Abbildungstechnik“, erklärt Boris Bergues. „Mit unserer Technologie sind wir insbesondere in der Lage, genau zu sehen an welcher Stelle des Nanoteilchens die Reaktionsausbeute am höchsten war. Damit haben wir erstmals eine Reaktion von Molekülen an der Oberfläche von Aerosolen mit höchster räumlicher Auflösung verfolgt“, ergänzt Matthias Kling.

Gerade in der Atmosphärenphysik oder der Astrochemie finden solche Vorgänge kontinuierlich statt. So trifft Licht in unserer Atmosphäre auf Aerosole und Moleküle auf ihrer Oberfläche. Das löst Reaktionen aus, die u.U. für die Entwicklung unseres Klimas von Bedeutung sind. Im Universum finden ähnliche chemische Prozesse auf kleinsten Staubteilchen unter extremen Bedingungen statt. Hierbei entstehen und reagieren Moleküle - ein Prozess, der auch zur Synthese von Biomolekülen beitragen kann.
Doch gerade im Bereich der Atmosphärenchemie könnten die Ergebnisse der Münchner Laserphysiker in naher Zukunft helfen, Prozesse die an Aerosolen ablaufen, besser zu verstehen, und sie vielleicht sogar eines Tages gewinnbringend gegen den Klimawandel einzusetzen.

Originalveröffentlichung:
Philipp Rupp, Christian Burger, Nora G. Kling, Matthias Kübel, Sambit Mitra, Philipp Rosenberger, Thomas Weatherby, Nariyuki Saito, Jiro Itatani, Ali Alnaser, Markus Raschke, Eckart Rühl, Annika Schlander, Markus Gallei, Lennart Seiffert, Thomas Fennel, Boris Bergues, Matthias F. Kling; "Few-cycle laser driven reaction nanoscopy on aerosolized silica nanoparticles"; Nature Communications; 11.Oktober 2019

Fakten, Hintergründe, Dossiers

Mehr über LMU

  • News

    Der Bauplan für einen Impfstoff gegen SARS-CoV-2 ist fertig

    Noch in diesem Jahr soll ein potenzieller Impfstoff gegen SARS-CoV-2 in ersten klinischen Versuchen am Menschen getestet werden. „Der Bauplan für den Impfstoff ist fertig. Jetzt muss der Impfstoff für die klinischen Tests noch produziert werden“, erklärt Prof. Dr. Stephan Becker. Der Leiter ... mehr

    Eine Art Fischer-Dübel der Biophysik

    Die Interaktion zwischen den Molekülen Biotin und Streptavidin ist ein wichtiges Werkzeug in der Forschung. LMU-Physiker haben die mechanische Stabilität dieser Verbindung nun detailliert untersucht und zeigen: Es kommt auf die Geometrie an. Mechanische Kräfte beeinflussen viele biologische ... mehr

    Mitochondrien - Spezialschleuse für Sperrgut

    Bereits in ihre 3D-Struktur gefaltete Proteine sind gewissermaßen Sperrgut in der Zelle. LMU-Wissenschaftler haben erstmals die Struktur eines Transportsystems für solche Proteine aufgeklärt und zeigen: In Mitochondrien ähnelt es einer Luftschleuse. Viele Proteine mit wichtigen Funktionen ... mehr

  • q&more Artikel

    Code erkannt

    Der genetische Code codiert alle Informationen, die in jeder Zelle für die ­korrekte Funktion und Interaktion der Zelle mit der Umgebung notwendig sind. Aufgebaut wird er aus vier unterschiedlichen Molekülen, den so genannten ­kanonischen Watson-Crick-Basen Adenin, Cytosin, Guanin und Thymi ... mehr

  • Autoren

    Prof. Dr. Thomas Carell

    Thomas Carell, Jg. 1966, studierte Chemie und fertigte seine Doktorarbeit am Max-Planck Institut für Medizinische Forschung unter der Anleitung von Prof. Dr. Dr. H. A. Staab an. Nach einem Forschungs-aufenthalt in den USA ging er an die ETH Zürich in das Laboratorium für Organische Chemie u ... mehr

Mehr über MPI für Quantenoptik

  • News

    Unverwechselbarer molekularer Fingerabdruck

    In Organismen zirkulieren die verschiedensten Arten von Molekülen. Der Stoffwechsel lässt in den Zellen ständig verschiedenste neue Moleküle entstehen, die auch in die Umgebung, etwa in das Blut, abgegeben werden. Eines der großen Ziele der Biomedizin ist es, diesen Molekülmix detailliert z ... mehr

    Direkte Abbildung von Riesenmolekülen

    Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich. Physikern unter Leitung von Prof. Immanuel Bloch, Direktor der Abteilung Quantenvielteilchensysteme am MPQ,  ist es nun jedoch gelungen, ... mehr

    Moleküle brillant beleuchtet

    Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt ist. Mit brillantem Infrarotlicht wollen Wissenschaftler des Labors für Attosekundenphysik (LAP), der Ludwig-Maximilians-Universität ( ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.