q&more
Meine Merkliste
my.chemie.de  
Login  

News

Neue Erkenntnisse über die Recyclingfabriken der Zellen

© RUB, Marquard

Harald Platta (links) und Fahid Boutouja erforschen die Transportprozesse, die in Zellen ablaufen.

11.10.2019: Wie kleine Müllschlucker säubern Organellen die Zellen von überflüssigem oder defektem Material. Welche Mechanismen dahinterstecken, finden Forscher gerade heraus.

Die Zellen sowohl von Tieren als auch von Pflanzen sind darauf angewiesen, dass sie von ihrem eigenen beschädigten oder überflüssigen Zellmaterial befreit werden – ein Vorgang, den man Autophagozytose nennt. Den Abbau der Substrate übernehmen Proteine. Er findet bei Tieren in einem Zellorganell namens Lysosom und bei Pflanzen und Hefen in der Vakuole statt. Die Abbauproteine selbst befinden sich nicht von Anfang an in der Vakuole oder im Lysosom, sondern müssen zunächst von Transportrezeptoren auf kleinen Vesikeln zu ihrer Wirkungsstätte gebracht werden.

Wie unersetzlich der Transportrezeptor Vps10 für diese Aufgabe ist, konnte das Team der Arbeitsgruppe Biochemie Intrazellulärer Transportprozesse der Ruhr-Universität Bochum (RUB) von Dr. Harald Platta jetzt zeigen.

In einer zweiten Studie analysierten die Wissenschaftler das Protein Vac8, welches die Fusion von kleinen und großen Vesikeln mit der vakuolären Membran reguliert, damit die jeweilige Fracht in das Innere der Vakuole entlassen werden kann.

Unersetzlich für den Abbau komplexer Substrate

Die Forscher konnten zeigen, dass der Transportrezeptor Vps10, welcher bei Pflanzen und Hefen das Abbauprotein Pro-Pep4 vom Endoplasmatischen Retikulum zur Vakuole dirigiert, nicht einer unter mehreren austauschbaren Rezeptoren ist. „Vps10 trägt vielmehr durch den effektiven Transport von Pro-Pep4 entscheidend zu der Aktivität der Vakuole während des Abbaus der zelleigenen Bestandteile bei“, so Harald Platta.

Ohne Vps10, dessen Ebenbild in menschlichen Zellen Sortillin heißt, könne Pro-Pep4 nicht effizient zur Vakuole gebracht und dort zu Pep4, das bei Menschen Cathepsin D heißt, aktiviert werden.

Während der Abbau von einzelnen kleinen Proteinen und Ribosomen in der Vakuole auch ohne Vps10 noch möglich ist, zeigte sich, dass der Abbau von komplexen Substraten, wie Peroxisomen oder Mitochondrien, ohne Vps10 nicht mehr effektiv erfolgen kann und mit einer Fehlsteuerung und damit ineffizienten Reifung von Pro-Pep4 einhergeht.

Weitreichende Auswirkungen

„Die Erkenntnisse aus dieser Studie sind auch für weitergehende Fragen relevant“, erklärt Platta. „So hängt es im Wesentlichen von Pep4 ab, wie giftig verschiedene für Pflanzen schädliche Pilze sind. Darüber hinaus schützt Pep4 Hefezellen vor der spontanen Bildung von Prionen, speziellen schädlichen Eiweißpartikeln, während der Verlust der Pep4-Aktivität zu einer verkürzten Lebensdauer führt. In Säugern führt ein Mangel des gereiften Pep4-Homologs Cathepsin D zu neurodegenerativen Störungen. Und die Fehlsteuerung von Pro-Cathepsin D wurde bei verschiedenen Krebsformen beobachtet.“

Die Membranen von Vesikel und Vakuole müssen miteinander fusionieren

Die zweite Studie analysierte das Protein Vac8, welches eng verwandt mit den Säuger-Proteinen Plakoglobin, einem Tumorsuppressor, und Katenin ist. Während letztere an der Plasmamembran Zell-Zell-Kontakte vermitteln, reguliert Vac8 innerhalb der Zelle die Fusion der Membranen von Transport-Vesikeln mit der vakuolären Membran. Dabei handelt es sich entweder um kleine Vesikel, die Abbauproteine enthalten, oder große Vesikel, die mit den abzubauenden Substraten beladen sind.

Die Fusion der Membranen scheint nicht, wie man annehmen würde, über die Bindung zu anderen Proteinen zu erfolgen, sondern, wie die Forscherinnen und Forscher zeigen konnten, über die Koordination von Lipiden. „In der Studie konnten wir darstellen, dass in Vac8-defizienten Zellen die Fusion und die abbauende Aktivität der Vakuole durch die experimentelle Zugabe von den Membranlipid-Bausteinen Ölsäure und Glycerin regeneriert werden konnte“, sagt Harald Platta. Daher nimmt Vac8 nach Meinung der Wissenschaftler eine zentrale Rolle bei der Autophagozytose von allen getesteten Substraten – zytosolische Proteine, Ribosomen, Peroxisomen – ein.

Vac8 scheint somit nicht nur als einfaches Adapter-Molekül zwischen zwei Membranen zu agieren, sondern mag womöglich auch die Zusammensetzung der umliegenden Lipide definieren, um den Kontakt der beiden Membranen vorzubereiten. „Dies wirft interessante neue Fragestellungen zur Identität der beteiligten Lipidtypen auf“, gibt Harald Platta einen Ausblick auf zukünftige Forschungsfragen.

Originalveröffentlichung:
Fahd Boutouja, Christian M. Stiehm, Thomas Mastalski, Rebecca Brinkmeier, Christina Reidick, Fouzi El Magraoui, Harald W. Platta; "Vps10-mediated targeting of Pep4 determines the activity of the vacuole in a substrate-dependent manner"; Scientific Reports; 2019
Fahd Boutouja, Christian M. Stiehm, Christina Reidick, Thomas Mastalski, Rebecca Brinkmeier, Fouzi El Magraoui, Harald W. Platta; "Vac8 controls vacuolar membrane dynamics during different autophagy pathways in Saccharomyces cerevisiae"; Cells; 2019

Fakten, Hintergründe, Dossiers

  • Zellen
  • Autophagozytose

Mehr über Ruhr-Universität Bochum

  • News

    Neue Ansätze zur Heilung verletzter Nerven

    Verhindert man die Abschaltung eines Proteins, könnte darin der Schlüssel zur Reparatur des Zentralen Nervensystems liegen. Verletzungen von Nervenfasern an Gehirn, Rückenmark und Sehnerven haben in der Regel funktionelle Verluste zur Folge, weil die Nervenfasern nicht regenerationsfähig si ... mehr

    Wie zwei Wassermoleküle miteinander tanzen

    Obwohl Wasser allgegenwärtig ist, ist die Wechselwirkung zwischen einzelnen Wassermolekülen bislang nicht vollständig verstanden. Ein internationales Forschungsteam hat neue Erkenntnisse zu der Interaktion von Wassermolekülen gewonnen. Die Wissenschaftler konnten erstmals alle Bewegungen zw ... mehr

    Hohe Reaktionsraten auch ohne Edelmetalle

    Edelmetalle sind oft effiziente Katalysatoren. Aber sie sind teuer und selten. Wie effizient edelmetallfreie Alternativen sind, ist bislang jedoch schwer zu bestimmen. Edelmetallfreie Nanopartikel könnten eines Tages teure Katalysatoren für die Wasserstoffproduktion ersetzen. Welche Reaktio ... mehr

  • q&more Artikel

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

    Mathies V. Evers

    Mathies Evers, Jahrgang 1989, studierte Chemie an der Ruhr-Universität Bochum, wo er an der Synthese atompräziser molekularer Cluster forschte. Nach seinem Masterabschluss begann er seine Doktorarbeit am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik und wird durch den ... mehr

    Prof. Dr. Kristina Tschulik

    Kristina Tschulik promovierte im Jahr 2012 an der TU Dresden und arbeitete als Postdoktorandin am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden sowie an der Universität Oxford. Danach baute sie gefördert durch ein NRW-Rückkehrprogramm die Arbeitsgruppe für „Elektrochemie u ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.