08.10.2019 - Technische Universität München

Proteinkomplex ClpX-ClpP könnte neuer Ansatzpunkt für Antibiotika werden

Schwachstelle in krankheitserregenden Bakterien

Noch immer sind Antibiotika die wichtigste Waffe zur Bekämpfung bakterieller Infektionen. Jedoch geht der Medizin aufgrund von immer häufiger vorkommenden Resistenzen die „Munition“ aus. Ein Forschungsteam hat nun die Struktur des proteinabbauenden Komplexes ClpX-ClpP aufgeklärt. Dies ist ein Schlüssel zur Entwicklung innovativer Antibiotika, die auf den Abbauprozess von defekten Proteinen in Bakterien abzielen.

Fast 700.000 Menschen erkranken in der EU jährlich an Infektionen durch antibiotikaresistente Erreger, circa 33.000 von ihnen sterben. Trotz dieser enormen und weltweit zunehmenden Gefahr wurden in den letzten Jahrzehnten nur wenige neue Antibiotika entwickelt und zugelassen.

Eine Verbesserung ist nicht in Sicht. Deshalb ist es dringend notwendig, neue Angriffspunkte in krankheitserregenden Bakterien zu finden und neuartige Antibiotika zu entwickeln, die diese Schwachstellen ausnutzen.

Neuer Wirkmechanismus zerstört Bakterien

Ein vielversprechendes Ziel für antibakterielle Therapien ist das proteinabbauende Enzym ClpP. Es spielt zum einen eine wichtige Rolle im bakteriellen Stoffwechsel und sorgt für den kontrollierten Abbau defekter Proteine. Dazu benötigt es jedoch das Protein ClpX als Starthilfe. Im Komplex mit ClpP erkennt ClpX Proteine die abgebaut werden sollen, entfaltet sie und leitet diese dann in seine fassartige Abbaukammer.

Wissenschaftler der Gruppen um Prof. Stephan Sieber, Technische Universität München (TUM) und Prof. Stefan Raunser, Direktor am Max-Planck-Institut für molekulare Physiologe in Dortmund, haben nun erstmals die dreidimensionale Struktur des proteinabbauenden Komplexes ClpX-ClpP aufgeklärt und damit eine wichtige Basis für zukünftige pharmakologische Anwendungen geschaffen.

Eine neue Klasse potentieller Antibiotika, die sogenannten Acyldepsipeptide (ADEP) bewirken einen unkontrollierten Abbau durch ClpP auch ohne die Unterstützung von ClpX. Dadurch werden lebenswichtige Proteine zerstört – mit tödlichen Folgen für die Bakterien.

Dieser einzigartige Wirkmechanismus hat ein beträchtliches Innovationspotential im Kampf gegen krankmachende Bakterien. Denn während gängige Antibiotika durch die Hemmung lebenswichtiger Prozesse wirken, wird in diesem Fall der antibakterielle Effekt durch die Aktivierung eines Vorgangs erzielt.

Bakterien entwaffnen

Neben dem Abbau von defekten Proteinen ist ClpP auch ein entscheidender Regulator bei der Produktion eines Arsenals bakterieller Gifte, die maßgeblich verantwortlich sind für die krankmachende Wirkung vieler Erreger.

An der TU München forscht die Gruppe um Prof. Stephan Sieber seit Jahren erfolgreich an der Protease ClpP und hat bereits eine Vielzahl potenter Hemmstoffe gegen ClpP und ClpX entwickelt, die die Produktion von bakteriellen Giften stoppen und sie damit quasi entwaffnen können. Dóra Balogh gelang es nun, den ClpX-ClpP Komplex herzustellen und zu stabilisieren.

Neue Möglichkeiten durch Aufklärung der Struktur von ClpX-ClpP

Im Detail konnte die Struktur des ClpX-ClpP Komplexes aber bisher noch nicht aufgeklärt werden. Dr. Christos Gatsogiannis, Mitarbeiter in der Gruppe um Prof. Stefan Raunser am MPI für molekulare Physiologe, gelang dies nun mittels Kryo-Elektronenmikroskopie.

Mit dieser Technik konnte das Team zeigen, dass ADEP und ClpX zwar an derselben Stelle an ClpP andocken, aber auf unterschiedliche Weise den Prozess des Proteinabbaus steuern. Während ClpX zu keiner Veränderung in der Struktur von ClpP führt, verursacht ADEP eine nicht vorgesehene Öffnung der Protease. Dadurch werden auch intakte Proteine unkontrolliert und ohne die Unterstützung von ClpX abgebaut.

Die Aufklärung dieses Mechanismus durch die Forscherteams aus Dortmund und München ist ein Meilenstein auf dem Weg zur Entwicklung innovativer antibiotischer Substanzen, die ClpP als Angriffsziel haben.

Fakten, Hintergründe, Dossiers

  • Antibiotika
  • Antibiotikaresistenzen
  • Proteinkomplexe
  • Antibiotikaresisten…
  • Infektionen
  • Bakterien
  • Kryo-Elektronenmikroskopie

Mehr über TUM

  • News

    Erster elektrischer Nanomotor aus DNA-Material

    Einem Forschungsteam unter Leitung der Technischen Universität München (TUM) ist es erstmals gelungen, einen molekularen Elektromotor mit der Methode des DNA-Origami herzustellen. Die winzige Maschine aus Erbgut-Material setzt sich selbst zusammen und wandelt elektrische Energie in Bewegung ... mehr

    Charakterisierung des Proteoms der Maus

    Proteine kontrollieren und organisieren fast jeden Aspekt des Lebens. Die Gesamtheit aller Proteine in einem Lebewesen, einem Gewebe oder einer Zelle ist das Proteom. Mittels Massenspektrometrie charakterisieren Forschende an der Technischen Universität München (TUM) das Proteom, also das E ... mehr

    Mini-Brennstoffzelle erzeugt Strom mit körpereigenem Zucker

    Traubenzucker, auch Glukose genannt, ist der wichtigste Energielieferant in unseren Körper. Wissenschaftlerinnen und Wissenschaftler der Technischen Universität München (TUM) und des Massachusetts Institute of Technology (MIT) wollen den Zucker im Körper nun auch als Energiequelle für mediz ... mehr

  • q&more Artikel

    Vitalkleber, ein Protein mit Potenzial

    In fast jedem der 17 Ziele der Agenda 2030 für eine nachhaltige Entwicklung spielen Lebensmittel und deren Wertschöpfungskette eine wichtige Rolle [1]. Mit der Agenda haben die Vereinten Nationen einen globalen Handlungsrahmen geschaffen, der sich an alle gesellschaftlichen Akteure richtet. mehr

    Biobasierte Rohstoffströme der Zukunft

    Der anthropogene Klimawandel und die steigende Weltbevölkerung im Verbund mit zunehmender Urbanisierung induzieren globale Herausforderungen an unsere Gesellschaft, die nur durch technologische Fortschritte gelöst werden können. mehr

    Ein Geschmacks- und Aromaschub im Mund

    Der Ernährungstrend hin zu gesünderen Snacks ist ungebremst. Snacks aus gefriergetrockneten Früchten erfüllen die Erwartungen der Verbraucher an moderne, hochwertige Lebensmittel. Allerdings erfordert die Gefriertrocknung ganzer Früchte lange Trocknungszeiten ... mehr

  • Autoren

    Prof. Dr. Thomas Becker

    Thomas Becker, Jahrgang 1965, studierte Technologie und Biotechnologie der Lebensmittel an der Technischen Universität München (TUM). Im Anschluss arbeitete er von 1992 bis 1993 als Projektingenieur in der Fa. Geo-Konzept. Die Promotion erfolgte 1995 an der TUM. Von 1996 bis 2004 war er als ... mehr

    Monika C. Wehrli

    Monika Wehrli, Jahrgang 1994, schloss ihr Studium mit Schwerpunkt Lebensmittelverfahrenstechnik an der ETH Zürich ab. Seit 2018 forscht sie an der Technischen Universität München am Lehrstuhl für Brau- und Getränketechnologie, wo sie ihre Promotion im Bereich Getreidetechnologie und -verfah ... mehr

    Prof. Dr. Thomas Brück

    Thomas Brück, Jahrgang 1972, absolvierte sein Bachelorstudium (B.Sc.) 1996 in den Fächern Chemie, Biochemie und Management an der Keele University in Stoke on Trent, U.K. Er hält einen Masterabschluss (1997) in Molekularmedizin von derselben Universität und promovierte 2002 auf dem Gebiet d ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: